Abstract:
A cooling control unit for a water-cooled multi-cylinder internal combustion engine having a cylinder deactivation mechanism for controlling the flow of coolant to prevent the internal combustion engine from being incompletely warmed up when the internal combustion engine returns to its operating condition with all of the cylinders being activated. A communicating passage communicates with a normally activated cylinder coolant jacket as a coolant passage formed for normally activated cylinders and a deactivation-programmed cylinder water jacket as a coolant passage formed for the deactivation-programmed cylinders to communicate with each other, and through which the coolant flows. A bypass passage diverges from the communicating passage and bypasses the deactivation-programmed cylinder coolant jacket. A diversion control valve is provided in a diversion section where the bypass passage diverges from the communication passage. A control member controls the diversion control valve in accordance with the operating state of the internal combustion engine.
Abstract:
An engine includes engine valves disposed on intake and exhaust sides of a combustion chambers with a valve operating device for opening and closing the engine valves and an engine valve disabling mechanism for disabling opening and closing movement of the engine valves in response to hydraulic pressure. An oil pump is disposed in a lower portion of the crankcase, for supplying hydraulic pressure to the engine valve disabling mechanism. A hydraulic pressure control valve controls the supply of hydraulic pressure to the engine valve disabling mechanism depending on a vehicle operating state. An oil passage extends to the hydraulic pressure control valve and can easily be formed without affecting mounts for functional components. A pipe for delivering working oil from the lower portion of the crankcase to the hydraulic pressure control valve is disposed on a front surface of the engine.
Abstract:
A cooling control unit for a water-cooled multi-cylinder internal combustion engine having a cylinder deactivation mechanism for controlling the flow of coolant to prevent the internal combustion engine from being incompletely warmed up when the internal combustion engine returns to its operating condition with all of the cylinders being activated. A communicating passage communicates with a normally activated cylinder coolant jacket as a coolant passage formed for normally activated cylinders and a deactivation-programmed cylinder water jacket as a coolant passage formed for the deactivation-programmed cylinders to communicate with each other, and through which the coolant flows. A bypass passage diverges from the communicating passage and bypasses the deactivation-programmed cylinder coolant jacket. A diversion control valve is provided in a diversion section where the bypass passage diverges from the communication passage. A control member controls the diversion control valve in accordance with the operating state of the internal combustion engine.
Abstract:
An electronic throttle control device in a internal combustion engine for a vehicle can be improved in maintainability and can be reduced in size. An electronic throttle control device in a V-type internal combustion engine for a vehicle has a fuel injection valve and throttle valves in an intake passage. A throttle driving motor controls the opening angle of each throttle valve according to the amount of operation of a throttle grip performed by an operator of the vehicle. The throttle driving motor is located outside a region surrounded by the throttle bodies that are respectively connected to all of intake ports as viewed in plan.
Abstract:
A cylinder head for an internal combustion engine in which any of a plurality of valve guides for guiding intake and exhaust poppet valves provided with valve lifters can be press-fitted in fitting holes of the cylinder head with a substantially uniform press fit force. At least one valve guide is fitted at a different depth in the cylinder head than others of the guides valves. The intake and exhaust poppet valves have substantially uniform thicknesses in the respective longitudinal directions of the valve guides. An idle fitting hole with an inner diameter greater than an outer diameter of the valve guides is formed above one of the fitting holes which is formed deeper in the cylinder head than the other fitting holes, the idle fitting hole extending upward to a lower side of a valve spring.
Abstract:
To provide a multi-cylinder engine for a motorcycle, in which at least one of a plurality of engine valves provided in a cylinder head for each of combustion chambers corresponding to a plurality of cylinder bores arranged in the width direction of a body frame can be rested in a specific operational region by a hydraulic valve resting mechanism. A hydraulic control valve is provided for controlling the hydraulic pressure of working oil supplied to the valve resting mechanism and is mounted on the cylinder head. The length of the multi-cylinder engine along the width direction of the body frame is made as short as possible although the hydraulic control valve is mounted in the cylinder head. A hydraulic control valve is mounted on a side surface of a cylinder head to which a plurality of intake ports are opened along the longitudinal direction of a body frame.
Abstract:
A valve system for an engine including a valve resting mechanism provided between an engine valve and a valve lifter supported by a cylinder head. The valve resting mechanism can place the engine valve into a resting state. The valve resting mechanism has a pin holder which includes a sliding hole having an axis perpendicular to the axis of a valve lifter, and an insertion hole for allowing a valve stem to pass therethrough. The pin holder is slidably fitted in the valve lifter. A slide pin is slidably fitted in the sliding hole, with a hydraulic force and a spring force applied to both ends of the slide pin. A containing hole is coaxially connectable to the insertion hole, and a rotation stopping means for stopping axial rotation of the slide pin is provided between the pin holder and the slide pin.
Abstract:
In an engine valve drive control device, a cam lobe is removably engaged with a cam shaft of a valve actuating line of an engine. The cam lobe is rotated, when engaged, together with the cam shaft to drive a valve. Free rotation of the disengaged cam lobe is halted by a cam rotation halting device to leave the valve inactive. The cam lobe is made axially slidable in the axial direction with respect to the cam shaft, and the engagement/disengagement of the cam lobe with/from the cam shaft are switched according to the sliding motion of the cam lobe.
Abstract:
The present invention relates to an intake device for an internal combustion engine mounted on motorcycles or other various vehicles. The intake device comprises an air flow resistance adjusting mechanism for adjusting the air flow resistance in an intake passage in linkage with a variable intake pipe length mechanism to provide an excellent optimum air/fuel ratio over the entire speed range of the internal combustion engine. The variable intake pipe length mehcanism comprises a stationary intake pipe connected to a carburetor, a guide pipe separated from the stationary intake pipe, and a movable intake pipe slidably mounted on the guide pipe so tat the movable intake pipe is capable of coming in contact with or being spaced from the stationary intake pipe in response to the engine revolving speed. The movable intake pipe is connected to the stationary intake pipe below the predetermined engine speed and separated from it above the predetermined engine speed. The air flow resistance adjusting mechanism comprises a case adapted to enclose the stationary intake pipe, the movable intake pipe and the guide pipe, and having an intake passage communicating with the atmosphere and a mechanism for varying the air flow resistance of the intake passage in response to the switching motion of the movable intake pipe.
Abstract:
An electronic throttle control device in a internal combustion engine for a vehicle can be improved in maintainability and can be reduced in size. An electronic throttle control device in a V-type internal combustion engine for a vehicle has a fuel injection valve and throttle valves in an intake passage. A throttle driving motor controls the opening angle of each throttle valve according to the amount of operation of a throttle grip performed by an operator of the vehicle. The throttle driving motor is located outside a region surrounded by the throttle bodies that are respectively connected to all of intake ports as viewed in plan.