Abstract:
A composition for manufacturing a composite of a non-oxide ceramic matrix and a refractory phase within the non-oxide ceramic matrix includes a preceramic polymer for forming a non-oxide ceramic matrix and a refractory material dispersed within the preceramic polymer.
Abstract:
A method of manufacturing a composite article includes pyrolyzing a preceramic polymer to form a non-oxide ceramic matrix and a byproduct, and reacting the refractory material with the byproduct to form a refractory phase within the non-oxide ceramic matrix.
Abstract:
A process for applying an oxidation resistant coating to an article includes the steps of mixing at least about 10% by volume to up to about 99% by volume of a slurry at least one silica based material having a viscosity of about 1×102 poise to about 1×107 poise at a temperature of about 1,292° F. (700° C.) to about 3,272° F. (1,800° C.) at least about 1% by volume to up to about 90% by volume of the slurry at least one oxygen scavenger, and a liquid medium to form the slurry; coating an article with the slurry to form a slurry coated article; and heat treating under an inert atmosphere the slurry coated article to form an article having at least one oxidation resistant coating layer containing the at least one oxygen scavenger.
Abstract:
A composite article includes a substrate, at least one protective layer on the substrate and an intermediate layer between the at least one protective layer and the substrate. The intermediate layer includes dense silicon oxycarbide.
Abstract:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
Abstract:
A composite article includes a substrate, at least one protective layer on the substrate and an intermediate layer between the at least one protective layer and the substrate. The intermediate layer includes dense silicon oxycarbide.
Abstract:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
Abstract:
An example turbomachine shroud assembly includes an annular shroud configured to receive a rotating component. A radially outer surface of the annular shroud establishes positioning slots and relief slots. The positioning slots are configured to receive a support finger that limits radial movement of the annular shroud. The relief slots are different than the positioning slots.
Abstract:
An article which includes a structure of a ceramic material that has a composition SiOxMzCy, where Si is silicon, O is oxygen, M is at least one metal and C is carbon and wherein x 0 and z
Abstract translation:一种制品,其包括具有组成SiO x M z C y的结构,其中Si是硅,O是氧,M是至少一种金属,C是碳,并且其中x <2,y> 0和z <1,x z不为零。