Abstract:
The invention includes methods of forming semiconductor constructions in which electrically conductive structures are formed between bitlines to electrically connect with storage node contacts. The bitlines can be formed within trenches having faceted top portions. The invention also includes semiconductor structures containing trenches with faceted top portions, and containing bitlines within the trenches.
Abstract:
A method used to form a semiconductor device provides a silicide layer on a plurality of transistor word lines and on a plurality of conductive plugs. In one embodiment, the word lines, one or more sacrificial dielectric layers on the word lines, conductive plugs, and a conductive enhancement layer are formed through the use of a single mask. An in-process semiconductor device which may be formed using one embodiment of the inventive method is also described.
Abstract:
The invention includes methods of forming semiconductor constructions in which electrically conductive structures are formed between bitlines to electrically connect with storage node contacts. The bitlines can be formed within trenches having faceted top portions. The invention also includes semiconductor structures containing trenches with faceted top portions, and containing bitlines within the trenches.
Abstract:
Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided.
Abstract:
A process for the formation of electrical interconnect lines by a selective metal etch to form electrical interconnections between different layers in a semiconductor device is provided. The process eliminates the need to form vias between conductive layers in the structure by etching through an oxide layer. The resulting structure provides superior electrical contacts between electrically conductive features on different layers of a semiconductor device. Additionally, the process produces self-aligned vias, thereby eliminating misalignment problems and the need to pattern surrounds onto the M1 layer in a semiconductor stack or any other lower level metal.
Abstract:
Fin-FET devices and methods of fabrication are disclosed. The Fin-FET devices include dual fins that may be used to provide a trench region between a source region and a drain region. In some embodiments, the dual fins may be formed by forming a trench with fin structures on opposite sides in a protruding region of a substrate. The dual fins may be useful in forming single-gate, double-gate or triple-gate fin-FET devices. Electronic systems including such fin-FET devices are also disclosed.
Abstract:
A process and apparatus directed to forming low resistance contacts in both the memory cell array and peripheral logic circuitry areas of a semiconductor device, for example, a DRAM memory device, is disclosed. In a buried bit line connection process flow, the present invention utilizes chemical vapor deposition of titanium to form titanium silicide in contact structures of the peripheral logic circuitry areas and physical vapor deposition to provide a metal mode (metallic) titanium layer in contact with the poly plugs in the memory cell array area of a semiconductor device, for example, a DRAM memory device according to the present invention. In this manner, the present invention avoids the potential drawbacks such as voiding in the poly plugs of the memory cell array due to the present of titanium silicide, which can cause significant reduction of device drain current and in extreme cases cause electrical discontinuity.
Abstract:
A method for use during fabrication of a semiconductor device comprises the formation of buried digit lines and contacts. During formation, a buried bit line layer may be used as a mask to etch one or more openings in a dielectric layer. A conductive layer is then formed in the one or more openings in the dielectric layer, and is then planarized to form one or more individual contact plugs. Next, the buried bit line layer is etched to recess the buried bit line layer, and a capacitor plate is formed to contact the contact plug.
Abstract:
Methods for forming memory devices and integrated circuitry, for example, DRAM circuitry, structures and devices resulting from such methods, and systems that incorporate the devices are provided.
Abstract:
Fin-FET devices and methods of fabrication are disclosed. The Fin-FET devices include dual fins that may be used to provide a trench region between a source region and a drain region. In some embodiments, the dual fins may be formed by forming a trench with fin structures on opposite sides in a protruding region of a substrate. The dual fins may be useful in forming single-gate, double-gate or triple-gate fin-PET devices. Electronic systems including such fin-FET devices are also disclosed.