Dual-band and wideband patch antenna

    公开(公告)号:US10784593B1

    公开(公告)日:2020-09-22

    申请号:US16053422

    申请日:2018-08-02

    Abstract: A dual-band patch antenna includes a first patch antenna for operation at a first frequency and a second patch antenna for operation at a second frequency that is an integer multiple of the first frequency. A dielectric support is provided on which the first and second patch antennas are mounted. A nearest distance defined between the first and second patch antennas is a function of the second frequency and a dielectric constant of the dielectric support. The dielectric support has a feed point adapted to have a transmission line electrically coupled thereto. Electrically-conducting paths are coupled to the dielectric support for electrically coupling the feed point to the first and second patch antennas where at least one such electrically-conducting path has an insertion loss that is greater than 0 dB and less than or equal to 3 dB.

    Black silicon blackbody calibration target

    公开(公告)号:US10371579B1

    公开(公告)日:2019-08-06

    申请号:US15386821

    申请日:2016-12-21

    Abstract: The disclosure is directed to a blackbody calibration target having a textured silicon substrate comprising a base comprising a plurality of needle like structures extending away from the base and having a total emissivity of greater than 99.5% from an electromagnetic radiation source having a wavelength greater than or equal to about 400 nanometers and less than or equal to about 1 mm. The disclosure is further directed to a blackbody calibration target system, and instrument which includes the blackbody calibration target, and a method of calibrating an instrument.

    Bi-stable pin actuator
    5.
    发明授权

    公开(公告)号:US10297376B2

    公开(公告)日:2019-05-21

    申请号:US15714119

    申请日:2017-09-25

    Inventor: Joseph C. Church

    Abstract: A bi-stable pin actuator includes a soft magnetic core and having a first central portion and a second central portion spaced apart from the first central portion. The first central portion has a first passage extending there-through and the second portion has a second passage extending there-through which is coaxial with the first passage. A first coil is wound about the first central portion and a second coil is wound about the second central portion. A pair of permanent magnets are located in the space between the first central portion and second central portion and attached to the core. An armature is movably positioned between and spaced apart from the permanent magnets. A pin is attached to the armature and extends into the first passage and second passages such that movement of the armature results in movement of the pin within the first passage and second passage. The armature moves between a first position wherein the armature is adjacent to the first central portion of the core and a second position wherein the armature is adjacent to the second central portion of the core. The armature is in one stable state when in the first position and in another of the stable state when in the second position. The magnets generate magnetic flux having a magnetic flux density sufficient to hold the armature in either of the stable states when neither of the coils is energized. When the armature is in the first stable state, only a first end of the pin protrudes from the core. When the armature is in the second stable state, only an opposite second end of the pin protrudes from the core. Energizing at least one of the coils generates a magnetic flux in one section of the actuator that opposes the magnetic flux holding the armature in a current stable state and supplements the magnetic flux in another section of the actuator so as to shift the armature into another stable state.

    Method for forming component-level radiation shield optimized for environmental radiation characteristics and design critera

    公开(公告)号:US10255382B1

    公开(公告)日:2019-04-09

    申请号:US15685556

    申请日:2017-08-24

    Abstract: A method for forming an optimized radiation shield design for a component including providing a computer system programmed to generate data files that define a component radiation shield having an optimized design based on pre-stored data defining particular radiation characteristics and user-provided data defining radiation shield design criteria. Radiation shield design criteria are inputted into the computer system which processes the inputted radiation shield design criteria and the pre-stored data defining particular radiation characteristics in order to generate data files defining an optimized design for a component radiation shield. The generated data files defining the optimized design for a component radiation shield are provided to a metallic three-dimensional printing system. The three-dimensional printing system is then activated to form a component radiation shield using a predetermined metal powder and the generated data files that define the optimized component radiation shield design. The formed component radiation shield is then attached to the component or the circuit board.

    Current source logic gate
    9.
    发明授权

    公开(公告)号:US09755645B1

    公开(公告)日:2017-09-05

    申请号:US15373689

    申请日:2016-12-09

    CPC classification number: H03K19/0952 H03K19/09403 H03K19/09407 H03K19/20

    Abstract: A current source logic gate with depletion mode field effect transistor (“FET”) transistors and resistors may include a current source, a current steering switch input stage, and a resistor divider level shifting output stage. The current source may include a transistor and a current source resistor. The current steering switch input stage may include a transistor to steer current to set an output stage bias point depending on an input logic signal state. The resistor divider level shifting output stage may include a first resistor and a second resistor to set the output stage point and produce valid output logic signal states. The transistor of the current steering switch input stage may function as a switch to provide at least two operating points.

Patent Agency Ranking