摘要:
A hybrid electrolyte system for fuel cells and other electrochemical reactors comprising an acid electrolyte, a base electrolyte, and a proton permeable dense phase separating the acid electrolyte from the base electrolyte.
摘要:
Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. In one system for producing hydrogen is provided which includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber. The cathode is spaced apart at a distance in the range between 0.1-100 centimeters, inclusive, from the anode. A conductive conduit for electrons is provided which is in electrical communication with the anode and the cathode and a power source for enhancing an electrical potential between the anode and cathode is included which is in electrical communication at least with the cathode. A first channel defining a passage from the exterior of the reaction chamber to the interior of the reaction chamber is also included.
摘要:
The present invention involves processes for producing zeolite catalyst with an exclusively internal surface platinum coating. In one embodiment, the process of the present invention comprises initially equilibrating zeolite (preferably in powder form) with an organic solution (e.g., dichloromethane) of a neutral organo-platinum compound preferably platinum acetylacetonate. The equilibrated zeolite is then washed to remove externally associated organo-platinum compound. In the preferred procedure here, the solvent is then removed from the washed zeolite. Next, organo-platinum compound contained in the washed zeolite is decomposed, preferably by heating to between about 200.degree. C. and about 300.degree. C. Finally, internally-contained decomposed organo-platinum compound is reduced, preferably by hydrogenolysis, to produce zeolite with an exclusively internal surface platinum coating.Another process for producing internally platinized zeolite catalyst is also part of the present invention. This process comprises initially incubating an aqueous mixture comprising a cationic platinum complex and zeolite powder. A preferred cationic platinum complex is cis-diaquodiammine platinum, although others of analogous structure and properties should be functional. Following separation of the incubated zeolite from the mixture, the zeolite is reacted with a tetraalkylammonium or tetraalkylphosphonium salt. The tetraalkylammonium or tetraalkylphosphonium salt is preferably a halide salt, most preferably tetrabutylammonium bromide. After removing unreacted tetraalkylammonium or tetraalkylphosphonium salt from the zeolite, residual cationic platinum complex in the zeolite is decomposed, preferably by photolysis. Internally contained decomposed platinum complex is then reduced, to produce zeolite with an exclusively internal surface platinum coating.
摘要:
A novel process and apparatus to combinatorially screen a large number of discrete compositions for electrocatalytic activity have been developed. The apparatus contains a cell body adjacent to a fluid permeable catalyst array support supporting multiple solids. A catalyst mask having holes that are in alignment with the multiple locations for supporting solids is placed over the catalyst array support, masking the solids. A cell cover is positioned adjacent to the catalyst array support, with the cell cover having a passage for monitoring the solids through the mask. A detector may be in alignment with the passage of the cell cover.
摘要:
The disclosed invention relates to a composite material for use in recovery of radionuclides, metals, and halogenated hydrocarbons from aqueous media. The material has very high surface area, and includes nanometer sized, zero-valent iron on a support. The material can be used to remediate aqueous media which have contaminants such as radionuclides, metals and halogenated hydrocarbons from aqueous media.
摘要:
Freestanding particles comprising a plurality of segments, wherein the particle length is from 20 nm to 50 μm and the particle width is form 5 nm to 50 μm.
摘要:
Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. In one system for producing hydrogen is provided which includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber. The cathode is spaced apart at a distance in the range between 0.1-100 centimeters, inclusive, from the anode. A conductive conduit for electrons is provided which is in electrical communication with the anode and the cathode and a power source for enhancing an electrical potential between the anode and cathode is included which is in electrical communication at least with the cathode. A first channel defining a passage from the exterior of the reaction chamber to the interior of the reaction chamber is also included.
摘要:
A microstructure includes a catalyst region, and a non-catalyst region proximate to the catalyst region. The catalyst region induces a chemical reaction of a fluid component when the microstructure is located within a fluid medium containing the fluid component. The chemical reaction induces relative motion between the fluid medium and the microstructure, which can be used to provide, for example, autonomous directional movement, rotation of microgears, microfluidic devices, and novel sensor configurations. In one example, a palladium catalyst is used, and the fluid medium is an aqueous solution of hydrogen peroxide.
摘要:
Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. One system for producing hydrogen includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber. The cathode is spaced apart at a distance in the range between 0.1-100 centimeters, inclusive, from the anode. A conductive conduit for electrons is provided which is in electrical communication with the anode and the cathode and a power source for enhancing an electrical potential between the anode and cathode is included which is in electrical communication at least with the cathode. A first channel defining a passage from the exterior of the reaction chamber to the interior of the reaction chamber is also included.