Abstract:
An optical power and wavelength monitor of an optical beam is described. The monitor includes a first detector positioned in the path of the optical beam that generates a first electrical signal that is proportional to an optical power of the optical beam. The monitor also includes an optical filter that is positioned in the path of the optical beam. The optical filter transmits a portion of the optical beam having a wavelength within a bandwidth of the optical filter. A second detector that is positioned in the path of the optical beam generates a second electrical signal that is proportional to an optical power of the filtered optical beam. A signal processor receives the first and second electrical signals and generates a signal that is proportional to the wavelength of the optical beam.
Abstract:
An optical digital external modulator having a cascaded arrangement of interferometers is provided. The optical modulator includes an electrode structure for applying an electric field to each interferometer in the cascade and biasing circuitry coupled to the electrode structure for biasing each interferometer at a predetermined bias point. In particular, each predetermined bias point is selected to be above quadrature and for providing improved transmission performance of digital data signals. Preferably, the modulator has a reflective design that helps to increase the modulation bandwidth, lower the drive voltage, and reduce size.
Abstract:
A micro-optic Mach-Zehnder interferometer with a differential delay of n bit periods, where n is an integer number, and thermal bias control is useful as a spectral filter in front of a differential detection system to accomplish a balanced receiver. The interferometer may also be arranged as a Michelson interferometer or a dual-plate interferometer.
Abstract:
An apparatus for monitoring and controlling the wavelength of laser radiation includes at a least one optical filter for receiving laser radiation and for transmitting and reflecting first and second filtered beams, respectively. Alternatively, the first and second beams may be transmitted by separate filters. The beams are filtered according to respective first and second spectral filter functions that cross at at least one crossing wavelength. A beam comparison element compares the first and second filtered beams and produces an error signal representative of the deviation of the wavelength of the laser radiation from a set-point wavelength. The beam comparison element can include first and second optical detectors and an error circuit for producing the error signal by taking a ratio or the difference of the signals detected by the detectors. Varying the angle of incidence of the laser radiation upon at least one optical filter varies the spectral filter function of that filter for selecting or varying the operating wavelength of the laser. A laser wavelength controller can receive the error signal for stabilizing or tuning the wavelength of the laser radiation. Several embodiments of the invention are disclosed.
Abstract:
An optical external modulator includes an optical waveguide having a first interferometer section and a second interferometer section formed on an electro-optic substrate. An electrode structure disposed on the substrate transmits an RF drive signal that is applied to the first and second interferometer sections in series. A reflector optically coupled to the substrate redirects light away from the first interferometer section to the second interferometer section and provides an optical fold region that introduces an optical time delay between the first and second interferometer sections. The optical time delay is used for at least partially compensating for a velocity mismatch between the light and the RF drive signal.
Abstract:
An integrated optical transmitter for use in an optical system includes an optical head assembly having an optical beam generator for providing an optical beam and a lens assembly for collecting the optical beam and generating therefrom a formed optical beam. Interface optics receive the formed optical beam for coupling the beam to a modulator so as to reduce nsertion loss to the optical beam. The optical modulator receives the optical beam from the interface optics and provides a modulated optical beam in response to received modulation signals. The optical modulator is coupled to the interface optics to be in a fixed relationship therewith. The integrated optical transmitter can include a means for sampling the optical beam and controlling the temperature of and/or the current supplied to the optical beam generator for controlling the wavelength of the optical transmitter. The optical head assembly and the modulator can be compliantly mounted to a mounting surface reducing the effects of thermal stress on the performance of the optical transmitter.
Abstract:
A highly stable soliton source uses a bulk Er/Yb glass laser which operates in two longitudinal modes of the laser cavity with substantially identical amplitudes to generate beat modulation. The beat modulation is then passed through a pulse compression fiber which compresses the beat modulation into a train of soliton pulses. Because the beat modulation is between two modes of the same laser cavity, the soliton pulse train generated is highly stable with low timing jitter.
Abstract:
A micro-optical delay element for a time-division multiplexing scheme is disclosed wherein two light beams are provided to a beam splitter/combiner (BS/C) in the absence of optical fibre. At least one beam exiting a modulator is collimated and reaches the (BS/C) unguided as a substantially collimated beam. This obviates a requirement for polarization controllers and polarization maintaining optical fiber
Abstract:
An apparatus for monitoring and controlling the wavelength of laser radiation includes at a least one optical filter for receiving laser radiation and for transmitting and reflecting first and second filtered beams, respectively. The beams are filtered according to respective first and second spectral filter functions that cross at at least one crossing wavelength. A beam comparison element compares the first and second filtered beams and produces an error signal representative of the deviation of the wavelength of the laser radiation from a set-point wavelength. Varying the angle of incidence of the laser radiation upon at least one optical filter varies the spectral filter function of that filter for selecting or varying the operating wavelength of the laser. A laser wavelength controller can receive the error signal for stabilizing or tuning the wavelength of the laser radiation.
Abstract:
A multi-channel wavelength monitor is described that includes a dispersive element that is positioned in an optical path of an incident optical beam having a plurality of wavelengths. The dispersive element disperses the optical beam into a plurality of optical beams that simultaneously propagate in a plurality of optical paths, where each of the plurality of optical beams has one of the plurality of wavelengths. An optical filter is positioned to intercept each of the plurality of optical paths at a plurality of locations. The optical filter substantially passes a respective one of the plurality of optical beams at a respective one of the plurality of locations and substantially blocks the other optical beams. A plurality of optical detectors is positioned adjacent to the optical filter in a direction of propagation of the plurality of optical beams. A respective one of the plurality of optical detectors is positioned in a respective one of the plurality of optical paths. Each of the plurality of detectors generates an electrical signal that is proportional to an intensity of a respective one of the plurality of optical beams.