Abstract:
The present application provides a method for producing an ion conductor containing Li2B12H12 and LiBH4, which includes obtaining a mixture by mixing LiBH4 and B10H14 at a molar ratio LiBH4/B10H14 of from 2.1 to 4.3; and subjecting the mixture to a heat treatment.
Abstract:
The present invention provides a manufacturing method suitable for manufacturing, in large amounts, an ionic conductor that is superior in terms of various properties such as ion conductivity. According to one embodiment of the present invention, provided is a method for manufacturing an ionic conductor, said method including: mixing, using a solvent, LiBH4 and a lithium halide represented by formula (1), LiX (1) (in formula (1), X represents one selected from the group consisting of halogen atoms); and removing the solvent at 60-280° C. Ionic conductors obtained with this manufacturing method can be used as, for example, solid electrolytes for all-solid-state batteries.
Abstract:
This optical sensor device includes a first light receiving portion having sensitivity to ultraviolet light, a first sealing portion covering the first light receiving portion, a second light receiving portion having sensitivity to ultraviolet light, and a second sealing portion which covers the second light receiving portion. At least one of the first sealing portion and the second sealing portion is configured to transmit at least part of a ultraviolet light wavelength band, the first sealing portion is formed from one or more resin layers and has transmission spectral characteristics that a first wavelength is set as a lower limit value of a transmission wavelength band, and the second sealing portion is formed from one or more resin layers and has transmission spectral characteristics that a second wavelength different from the first wavelength is set as a lower limit value of the transmission wavelength band.
Abstract:
The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured γ′ phase present in the matrix, and including at least one of Ru: 0.8 mass % or more and 5.0 mass % or less and Re: 0.8 mass % or more and 5.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
Abstract:
A hetero type monodispersed polyethylene glycol containing a compound represented by the following formula (1): NH2—(CH2CH2O)a—CH2CH2COOH (1) (in the formula (1), a represents an integer from 6 to 40); wherein any of (A) a chromatogram detected by a differential refractometer when the hetero type monodispersed polyethylene glycol is separated using reverse phase chromatography, (B) a chromatogram detected by a differential refractometer when the hetero type monodispersed polyethylene glycol is separated using cation exchange chromatography, and (C) a chromatogram detected by a differential refractometer when the hetero type monodispersed polyethylene glycol containing a compound represented by the formula (1) shown above is derivatized and separated using anion exchange chromatography satisfy specific relational expressions, respectively.
Abstract:
One embodiment provides a solid-state battery that has a positive-electrode layer; a negative-electrode layer; and a lithium-ion-conducting solid electrolyte layer disposed between the positive-electrode layer and the negative-electrode layer. The positive-electrode layer contains a positive-electrode active material and a solid electrolyte comprising a hydride of a complex. Said positive-electrode active material is sulfur-based, and the solid electrolyte layer contains a solid electrolyte comprising a hydride of a complex.
Abstract:
The present invention is a heat-resistant Ni-base alloy including a Ni—Ir—Al—W alloy having essential additive elements of Ir, Al, and W added to Ni, wherein the heat-resistant Ni-base alloy includes Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, and W: 5.0 to 20.0 mass %, the balance being Ni, and a γ′ phase having an L12 structure disperses in a matrix as an essential strengthening phase. The heat-resistant material including the Ni-base alloy may contain one or more additive elements selected from B: 0.001 to 0.1 mass %, Co: 5.0 to 20.0 mass %, Cr: 1.0 to 25.0 mass %, Ta: 1.0 to 10.0 mass %, Nb: 1.0 to 5.0 mass %, Ti: 1.0 to 5.0 mass %, V: 1.0 to 5.0 mass %, and Mo: 1.0 to 5.0 mass %, or 0.001 to 0.5 mass % of C.
Abstract:
One embodiment provides a solid-state battery that has a positive-electrode layer, a negative-electrode layer, and a lithium-ion-conducting solid electrolyte layer disposed between the positive-electrode layer and the negative-electrode layer. The positive-electrode layer and/or the solid electrolyte layer contains a sulfide solid electrolyte, the negative-electrode layer and/or the solid electrolyte layer contains a solid electrolyte comprising a hydride of a complex, and at least part of the sulfide solid electrolyte is in contact with at least part of the solid electrolyte comprising a hydride of a complex.
Abstract:
A lithium ion secondary battery including: a cathode including a plurality cathode active material particles; an electrolyte; and an anode, wherein a cathode active material particle of the plurality of cathode active material particles has a plate-shaped crystal structure having an aspect ratio of 2 to 1000, wherein a major surface in at least one direction of the plate-shaped crystal structure is a 111 face, wherein the cathode active material particle also has a spinel-type crystal structure, and wherein the cathode active material particle has a composition represented by the formula LiCo2-xNixO4, wherein 0
Abstract:
A vanadium redox battery is a battery capable of charging and discharging utilizing an oxidation-reduction reaction of vanadium as an active material. The vanadium redox battery includes a cathode and an anode. The vanadium redox battery includes an auxiliary electrode that is provided in at least one of the cathode and the anode.