摘要:
Modified relaxin polypeptides and their uses are provided. In one aspect, the disclosure provides a relaxin polypeptide comprising one or more non-naturally encoded amino acids. The polypeptide may be linked to a linker, polymer, or biologically active molecule. The serum half-life of the relaxin polypeptide may be enhanced relative to the unconjugated form. In another aspect, the disclosure provides methods of treating a patient having a disorder modulated by relaxin.
摘要:
The invention provides peptide synthons having protected functional groups for attachment of desired moieties (e.g. functional molecules or probes). Also provided are peptide conjugates prepared from such synthons, and synthon and conjugate preparation methods including procedures for identifying optimum probe attachment sites. Biosensors are provided having functional molecules that can locate and bind to specific biomolecules within living cells. Biosensors can detect chemical and physiological changes in those biomolecules as living cells are moving, metabolizing and reacting to its environment. Methods are included for detecting GTP activation of a Rho GTPase protein using polypeptide biosensors. When the biosensor binds GTP-activated Rho GTPase protein, an environmentally sensitive dye emits a signal of a different lifetime, intensity or wavelength than when not bound. New fluorophores whose fluorescence responds to environmental changes are also provided that have improved detection and attachment properties, and that can be used in living cells, or in vitro.
摘要:
Disclosed herein are non-natural amino acids and dolastatin analogs that include at least one non-natural amino acid, and methods for making such non-natural amino acids and polypeptides. The dolastatin analogs can include a wide range of possible functionalities, but typically have at least one oxime, carbonyl, dicarbonyl, and/or hydroxylamine group. Also disclosed herein are non-natural amino acid dolastatin analogs that are further modified post-translationally, methods for effecting such modifications, and methods for purifying such dolastatin analogs. Typically, the modified dolastatin analogs include at least one oxime, carbonyl, dicarbonyl, and/or hydroxylamine group. Further disclosed are methods for using such non-natural amino acid dolastatin analogs and modified non-natural amino acid dolastatin analogs, including therapeutic, diagnostic, and other biotechnology use.