Abstract:
Methods, apparatuses and systems receive information, via at least one sensor, indicating an ergonomic characteristic of a user of a computing device. The information is user to determine if the ergonomic characteristic of the user is within a reference ergonomic boundary. In response to determining the ergonomic characteristic of the user is not within the reference ergonomic boundary, processing is executed to determine an adjustment for the user to make so that the ergonomic characteristic of the user is within the reference ergonomic boundary, the adjustment to include at least one of an adjustment to the ergonomic characteristic of the user and an adjustment to the computing device.
Abstract:
Discussed generally herein are methods and devices including or providing a magnetic, detachable, conductive connector to provide an electrical and mechanical connection between parts. A device can include a first substrate, at least one electric component on or at least partially in a first surface of the first substrate, an adhesive on the first surface of the first substrate to temporarily attached the device to skin of a user, a contact pad electrically coupled to an electric component of the at least one electric component, the contact pad on or at least partially in a second surface of the substrate, the first surface opposite the second surface, and a conductive magnetic connector electrically and mechanically connected to the contact pad through a first conductive adhesive.
Abstract:
Methods, apparatuses and systems receive information, via at least one sensor, indicating an ergonomic characteristic of a user of a computing device. The information is user to determine if the ergonomic characteristic of the user is within a reference ergonomic boundary. In response to determining the ergonomic characteristic of the user is not within the reference ergonomic boundary, processing is executed to determine an adjustment for the user to make so that the ergonomic characteristic of the user is within the reference ergonomic boundary, the adjustment to include at least one of an adjustment to the ergonomic characteristic of the user and an adjustment to the computing device.
Abstract:
A circuit interconnect may be used in biometric data sensing and feedback applications. A circuit interconnect may be used in device device-to-device connections (e.g., Internet of Things (IoT) devices), including applications that require connection between stretchable and rigid substrates. A circuit interconnect may include a multi-pin, snap-fit attachment mechanism, where the attachment mechanism provides an electrical interconnection between a rigid substrate and a flexible or stretchable substrate. The combination of a circuit interconnect and flexible or stretchable substrate provides improved electrical connection reliability, allows for greater stretchability and flexibility of the circuit traces, and allows for more options in connecting a stretchable circuit trace to a rigid PCB.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for an apparatus for opportunistic measurements of user's physiological context. In one instance, the apparatus may comprise a work surface that includes one or more electrodes disposed on the work surface to directly or indirectly contact with user's portions of limbs, when the user's portions of limbs are disposed on the work surface to interact with the apparatus, to obtain one or more parameters of user's physiological context; and circuitry coupled with the electrodes to detect direct or indirect contact between the user's portions of limbs and the electrodes and on detection, collect the parameters of the user's physiological context while the direct or indirect contact is maintained. Other embodiments may be described and/or claimed.
Abstract:
Apparatus and methods may provide for determining a value of chemical parameter. One or more light emitters may be positioned within a housing to emit light through an aperture of the housing. The emitted light may illuminate a color area of a structure that is separable from the housing, such as a test strip, a printed color reference, and so on. A color sensor may be positioned within the housing to capture reflected light and to convert the reflected light to an initial digitized color space that may be usable to determine a color shade of a color area. The reflected light may, for example, be captured independently at least of a dimension (e.g., predetermined size, shape, etc.) of the color area.