摘要:
The present invention relates to a quantum dot light emitting diode device in which a hole transportation layer is formed after forming a quantum dot light emitting layer by a solution process by applying an inverted type quantum dot light emitting diode device for making free selection of a hole transportation layer material that enables easy injection of a hole to the quantum dot light emitting layer; and display device and method therewith.
摘要:
Methods for producing nanoparticle thin films are disclosed. According to one of the methods, a nanoparticle thin film is produced by modifying the surface of nanoparticles to allow the nanoparticles to be charged, controlling an electrostatic attractive force between the charged nanoparticles and a substrate and a repulsive force between the individual nanoparticles by a variation in pH to control the number density of the nanoparticles arranged on the substrate.
摘要:
Provided are quantum dots having a gradual composition gradient shell structure which have an improved luminous efficiency and optical stability, and a method of manufacturing the quantum dots in a short amount of time at low cost. In the method, the quantum dots can be manufactured in a short amount of time at low cost using a reactivity difference between semiconductor precursors, unlike in uneconomical and inefficient conventional methods where shells are formed after forming cores and performing cleaning and redispersion processes. Also, formation of the cores is followed by formation of shells having a composition gradient.
摘要:
Provided are quantum dots having a gradual composition gradient shell structure which have an improvedluminous efficiency and optical stability, and a method of manufacturing the quantum dots in a short amount of time at low cost. In the method, the quantum dots can be manufactured in a short amount of time at low cost using a reactivity difference between semiconductor precursors, unlike in uneconomical and inefficient conventional methods where shells areformed after forming cores and performing cleaning and redispersion processes. Also, formation of the cores is followed by formation of shells having a composition gradient. Thus, even if the shells are formed to a large thickness, the lattice mismatch between cores and shells is relieved. Furthermore, on the basis of the funneling concept, electrons and holes generated in the shells are transferred to the cores to emit light, thereby obtaining a high luminous efficiency of 80% or more. The quantum dot structure is not limited to Group II-IV semiconductor quantum dots but can be applied to other semiconductors quantum dots, such as Group III-V semiconductors quantum dots and Group IV-IV semiconductors quantum dots. Also, the manufacturing method can be utilized in the development of semiconductor quantum dots having different physical properties, and in various other fields.
摘要:
Methods for producing nanoparticle thin films are disclosed. According to one of the methods, a nanoparticle thin film is produced by modifying the surface of nanoparticles to allow the nanoparticles to be charged, controlling an electrostatic attractive force between the charged nanoparticles and a substrate and a repulsive force between the individual nanoparticles by a variation in pH to control the number density of the nanoparticles arranged on the substrate.
摘要:
The present invention relates to a quantum dot light emitting diode device in which a hole transportation layer is formed after forming a quantum dot light emitting layer by a solution process by applying an inverted type quantum dot light emitting diode device for making free selection of a hole transportation layer material that enables easy injection of a hole to the quantum dot light emitting layer; and display device and method therewith.
摘要:
The present invention relates to a quantum dot light emitting element which can form a quantum light emitting layer configured of charge transporting particles and quantum dots and a charge transporting layer in a solution process, to reduce process expense, and a method for manufacturing the same. The quantum dot light emitting element includes a substrate, an anode formed on the substrate, a quantum light emitting layer formed on the anode, the quantum light emitting layer having charge transporting particles and quantum dots mixed therein, and a cathode formed on the quantum light emitting layer.
摘要:
Provided are quantum dots having a gradual composition gradient shell structure which have an improved luminous efficiency and optical stability, and a method of manufacturing the quantum dots in a short amount of time at low cost. In the method, the quantum dots can be manufactured in a short amount of time at low cost using a reactivity difference between semiconductor precursors, unlike in uneconomical and inefficient conventional methods where shells are formed after forming cores and performing cleaning and redispersion processes. Also, formation of the cores is followed by formation of shells having a composition gradient.
摘要:
The present invention relates to a quantum dot light emitting element which can form a quantum light emitting layer configured of charge transporting particles and quantum dots and a charge transporting layer in a solution process, to reduce process expense, and a method for manufacturing the same. The quantum dot light emitting element includes a substrate, an anode formed on the substrate, a quantum light emitting layer formed on the anode, the quantum light emitting layer having charge transporting particles and quantum dots mixed therein, and a cathode formed on the quantum light emitting layer.