摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
An approach is provided for a method to manufacture a crystalline silicon ingot. The method comprises providing a mold formed for melting and cooling a silicon feedstock by using a directional solidification process, disposing a barrier layer inside the mold, disposing one or more silicon crystal seeds on the barrier layer, loading the silicon feedstock on the silicon crystal seeds, heating the mold to obtain a silicon melt, and cooling the mold by the directional solidification process to solidify the silicon melt into a silicon ingot. The mold is heated until the silicon feedstock is fully melted and the silicon crystal seeds are at least partially melted.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
An approach is provided for a method to manufacture a crystalline silicon ingot. The method comprises providing a mold formed for melting and cooling a silicon feedstock by using a directional solidification process, disposing a barrier layer inside the mold, disposing one or more silicon crystal seeds on the barrier layer, loading the silicon feedstock on the silicon crystal seeds, heating the mold to obtain a silicon melt, and cooling the mold by the directional solidification process to solidify the silicon melt into a silicon ingot. The mold is heated until the silicon feedstock is fully melted and the silicon crystal seeds are at least partially melted.
摘要:
A crystal growth device includes a crucible and a heater setting. The crucible has a bottom and a top opening. The heater setting surrounds the crucible and is movable relative to the crucible along a top-bottom direction of the crucible and between first and second positions. The heater setting includes a first temperature heating zone and a second temperature heating zone higher in temperature than the first temperature heating zone. The heater setting is in the first position when the crucible is in the second temperature heating zone and in the second position when the crucible is in the first temperature heating zone.
摘要:
A crystalline silicon ingot and a method of manufacturing the same are provided. Using a crystalline silicon seed layer, the crystalline silicon ingot is formed by a directional solidification process. The crystalline silicon seed layer is formed of multiple primary monocrystalline silicon seeds and multiple secondary monocrystalline silicon seeds. Each of the primary monocrystalline silicon seeds has a first crystal orientation different from (100). Each of the secondary monocrystalline silicon seeds has a second crystal orientation different from the first crystal orientation. Each of the primary monocrystalline silicon seeds is adjacent to at least one of the secondary monocrystalline silicon seeds, and separate from the others of the primary monocrystalline silicon seeds.
摘要:
A crystal growth device includes a crucible and a heater setting. The crucible has a bottom and a top opening. The heater setting surrounds the crucible and is movable relative to the crucible along a top-bottom direction of the crucible and between first and second positions. The heater setting includes a first temperature heating zone and a second temperature heating zone higher in temperature than the first temperature heating zone. The heater setting is in the first position when the crucible is in the second temperature heating zone and in the second position when the crucible is in the first temperature heating zone.
摘要:
A crystalline silicon ingot and a method of manufacturing the same are provided. Using a crystalline silicon seed layer, the crystalline silicon ingot is formed by a directional solidification process. The crystalline silicon seed layer is formed of multiple primary monocrystalline silicon seeds and multiple secondary monocrystalline silicon seeds. Each of the primary monocrystalline silicon seeds has a first crystal orientation different from (100). Each of the secondary monocrystalline silicon seeds has a second crystal orientation different from the first crystal orientation. Each of the primary monocrystalline silicon seeds is adjacent to at least one of the secondary monocrystalline silicon seeds, and separate from the others of the primary monocrystalline silicon seeds.