摘要:
A crystalline silicon ingot and a method of manufacturing the same are provided. Using a crystalline silicon seed layer, the crystalline silicon ingot is formed by a directional solidification process. The crystalline silicon seed layer is formed of multiple primary monocrystalline silicon seeds and multiple secondary monocrystalline silicon seeds. Each of the primary monocrystalline silicon seeds has a first crystal orientation different from (100). Each of the secondary monocrystalline silicon seeds has a second crystal orientation different from the first crystal orientation. Each of the primary monocrystalline silicon seeds is adjacent to at least one of the secondary monocrystalline silicon seeds, and separate from the others of the primary monocrystalline silicon seeds.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
A crystal growth device includes a crucible and a heater setting. The crucible has a bottom and a top opening. The heater setting surrounds the crucible and is movable relative to the crucible along a top-bottom direction of the crucible and between first and second positions. The heater setting includes a first temperature heating zone and a second temperature heating zone higher in temperature than the first temperature heating zone. The heater setting is in the first position when the crucible is in the second temperature heating zone and in the second position when the crucible is in the first temperature heating zone.
摘要:
A crystal growth device includes a crucible and a heater setting. The crucible has a bottom and a top opening. The heater setting surrounds the crucible and is movable relative to the crucible along a top-bottom direction of the crucible and between first and second positions. The heater setting includes a first temperature heating zone and a second temperature heating zone higher in temperature than the first temperature heating zone. The heater setting is in the first position when the crucible is in the second temperature heating zone and in the second position when the crucible is in the first temperature heating zone.
摘要:
An approach is provided for a method to manufacture a crystalline silicon ingot. The method comprises providing a mold formed for melting and cooling a silicon feedstock by using a directional solidification process, disposing a barrier layer inside the mold, disposing one or more silicon crystal seeds on the barrier layer, loading the silicon feedstock on the silicon crystal seeds, heating the mold to obtain a silicon melt, and cooling the mold by the directional solidification process to solidify the silicon melt into a silicon ingot. The mold is heated until the silicon feedstock is fully melted and the silicon crystal seeds are at least partially melted.
摘要:
An approach is provided for a method to manufacture a crystalline silicon ingot. The method comprises providing a mold formed for melting and cooling a silicon feedstock by using a directional solidification process, disposing a barrier layer inside the mold, disposing one or more silicon crystal seeds on the barrier layer, loading the silicon feedstock on the silicon crystal seeds, heating the mold to obtain a silicon melt, and cooling the mold by the directional solidification process to solidify the silicon melt into a silicon ingot. The mold is heated until the silicon feedstock is fully melted and the silicon crystal seeds are at least partially melted.
摘要:
A crystalline silicon ingot and a method of fabricating the same are disclosed. The crystalline silicon ingot of the invention includes multiple silicon crystal grains growing in a vertical direction of the crystalline silicon ingot. The crystalline silicon ingot has a bottom with a silicon crystal grain having a first average crystal grain size of less than about 12 mm. The crystalline silicon ingot has an upper portion, which is about 250 mm away from said bottom, with a silicon crystal grain having a second average crystal grain size of greater than about 14 mm.
摘要:
In a crystalline silicon formation apparatus, a quick cooling method is applied to the bottom of a crucible to control a growth orientation of a polycrystalline silicon grain, such that the crystal grain forms twin boundary, and the twin boundary is a symmetric grain boundary, and the crystal grain is solidified and grown upward in unidirection to form a complete polycrystalline silicon, such that defects or impurities will not form in the polycrystalline silicon easily.
摘要:
In a crystalline silicon formation apparatus, a quick cooling method is applied to the bottom of a crucible to control a growth orientation of a polycrystalline silicon grain, such that the crystal grain forms twin boundary, and the twin boundary is a symmetric grain boundary, and the crystal grain is solidified and grown upward in unidirection to form a complete polycrystalline silicon, such that defects or impurities will not form in the polycrystalline silicon easily.
摘要:
The invention provides a method of manufacturing a composite wafer structure. In particular, the method, according to the invention, is based on the fracture mechanics theory to actively control fracture induced during the manufacture of the composite wafer structure and to further protect from undesired edge damage. Thereby, the method, according to the invention, can enhance the yield rate of industrial mass production regarding the composite wafer structure.