摘要:
A crystalline silicon ingot and a method of manufacturing the same are provided. Using a crystalline silicon seed layer, the crystalline silicon ingot is formed by a directional solidification process. The crystalline silicon seed layer is formed of multiple primary monocrystalline silicon seeds and multiple secondary monocrystalline silicon seeds. Each of the primary monocrystalline silicon seeds has a first crystal orientation different from (100). Each of the secondary monocrystalline silicon seeds has a second crystal orientation different from the first crystal orientation. Each of the primary monocrystalline silicon seeds is adjacent to at least one of the secondary monocrystalline silicon seeds, and separate from the others of the primary monocrystalline silicon seeds.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
A crystalline silicon ingot and a method of fabricating the same are disclosed. The crystalline silicon ingot of the invention includes multiple silicon crystal grains growing in a vertical direction of the crystalline silicon ingot. The crystalline silicon ingot has a bottom with a silicon crystal grain having a first average crystal grain size of less than about 12 mm. The crystalline silicon ingot has an upper portion, which is about 250 mm away from said bottom, with a silicon crystal grain having a second average crystal grain size of greater than about 14 mm.
摘要:
The invention provides an epitaxial substrate and fabrication thereof. The epitaxial substrate according to the invention includes a crystalline substrate. In particular, the crystalline substrate has an epitaxial surface which is nano-rugged and non-patterned. The epitaxial substrate according to the invention thereon benefits a compound semiconductor material in growth of epitaxy films with excellent quality. Moreover, the fabrication of the epitaxial substrate according to the invention has advantages of low cost and rapid production.
摘要:
The instant disclosure relates to a nanostructuring process for an ingot surface prior to the slicing operation. A surface treatment step is performed for at least one surface of the ingot in forming a nanostructure layer thereon. The nanostructure layer is capable of enhancing the mechanical strength of the ingot surface to reduce the chipping ratio of the wafer during slicing.