摘要:
Aspects of the present invention provide a method of specifying a device driver design for a board device. The method includes receiving a board device with various functional elements and on-board storage to be operatively coupled to a computing device through an interconnect. The device driver design is specified through the identification of one or more device driver parameters. The device driver parameters are to be used subsequently to customize an adaptive device driver that interfaces with the board device and each of the one or more functional elements. Device driver parameters are stored in a predetermined storage construct allocated from the board device. These device driver parameters remain stored in the storage construct until there is a need for the board device and corresponding device driver. Customizing the adaptive device driver is done after the device driver parameters have been stored and typically when a computer device starts or ‘boots”. Initially, aspects of the present invention may receive an indication that a board device and one or more functional elements associated with the board device have been attached to an interconnect and requires a device driver. Next, aspect of the present invention retrieve device driver parameters from the storage constructs and customizes the adaptable device driver into a device driver for the board device in accordance with the device driver parameters.
摘要:
A storage system includes a host computer coupled to a device to transfer a DMA descriptor between the host and the device. An integrity manager manages the integrity of the DMA descriptor between the host computer and the device. The integrity manager embeds a host-side DMA descriptor integrity value in the DMA descriptor and the device transfers the DMA descriptor to a device memory. The device generates a device-side DMA descriptor integrity value and compares it to the host-side DMA descriptor integrity value to determine if the descriptor is corrupted.
摘要:
Multiple domains are created for processes of a storage server. The processes are capable of execution on a plurality of processors in the storage server. The domains include a first domain, which includes multiple threads that can execute processes in the first domain in parallel, to service data access requests. A data set managed by the storage server is logically divided into multiple subsets, and each of the subsets is assigned to exactly one of the threads in the first domain, for processing of data access requests directed to the data set.
摘要:
Collections of composite particles comprise inorganic particles and another composition, such as a polymer and/or a coating composition. In some embodiments, the composite particles have small average particle sizes, such as no more than about 10 microns or no more than about 2.5 microns. The composite particles can have selected particle architectures. The inorganic particles can have compositions selected for particular properties. The composite particles can be effective for printing applications, for the formation of optical coatings, and other desirable applications.
摘要:
A file system in a storage system allows a user to designate data as write-once read-many (WORM) data. The WORM data are stored in a first set of storage media of the storage system. Signature data are generated from the WORM data. Using the signature data, the integrity of the WORM data can be verified.
摘要:
Aspects of the present invention provide a method of specifying a device driver design for a board device. The method includes receiving a board device with various functional elements and on-board storage to be operatively coupled to a computing device through an interconnect. The device driver design is specified through the identification of one or more device driver parameters. The device driver parameters are to be used subsequently to customize an adaptive device driver that interfaces with the board device and each of the one or more functional elements. Device driver parameters are stored in a predetermined storage construct allocated from the board device. These device driver parameters remain stored in the storage construct until there is a need for the board device and corresponding device driver. Customizing the adaptive device driver is done after the device driver parameters have been stored and typically when a computer device starts or ‘boots”. Initially, aspects of the present invention may receive an indication that a board device and one or more functional elements associated with the board device have been attached to an interconnect and requires a device driver. Next, aspect of the present invention retrieve device driver parameters from the storage constructs and customizes the adaptable device driver into a device driver for the board device in accordance with the device driver parameters.
摘要:
Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
摘要:
This invention provides a specified retention date within a data set that is locked against deletion or modification within a WORM storage implementation. This retention date scheme does not utilize any proprietary application program interfaces (APIs) or protocols, but rather, employs native functionality within conventional file (or other data containers, data sets or block-based logical unit numbers) properties available in commonly used operating systems. In an illustrative embodiment, the retention date/time is calculated by querying the file's last-modified time prior to commit, adding the retention period to this value and thereby deriving a retention date after which the file can be released from WORM. Prior to commit, the computed retention date is stored in the file's “last access time” property/attribute field, or another metadata field that remains permanently associated with the file and that, in being used for retention date, does not interfere with file management in a WORM state. Since this field is not utilized in a WORM context, it can be adapted to store this date. Once stored, the retention date in this field is locked against modification. Where extension (never reduction) of a retention period is desired, the last access time field be updated, wherein the new retention period is added to the existing last access time value to derive a new, later retention date for the file. Upon expiry of the retention date, the system allows deletion of the expired WORM file/data set.
摘要:
A system and method are provided for storing request information in separate memory, in response to the detection of a power failure. This is accomplished by detecting the power failure and, in response, storing the request information in separate memory utilizing a secondary power source. By this feature, the request information is safely stored during a period of power failure. To this end, in various embodiments, the request information may be stored for later use in satisfying corresponding requests when power is restored.
摘要:
According to an embodiment of the invention, a storage server is mirrored onto a mirroring server. The mirroring server maintains point-in-time images of data stored on the storage server. The point-in-time images have a retention period. During the retention period, the point-in-time images must be maintained to comply with 17 C.F.R. 240.17a-4 (the “Rule”). When a command to delete a point-in-time image is issued, the file system of the mirroring server references a table including a list of point-in-time images and their retention dates. If the current date is greater than the retention date, the point-in-time image is deleted. If the current date is less than the retention date, the point-in-time image cannot be deleted.