摘要:
Methods of forming a metal silicide layer are provided that include exposing polysilicon through just dry etching (JDE) and recessesing an oxide layer through chemical dry etching (CDE). In particular, dry etching is primarily performed to an extent to expose the polysilicon. Then, CDE is secondarily performed to expose the polysilicon. The CDE process includes selecting an etchant source among combinations of NF3 and NH3, HF and NH3, and N2, H2, and NF3, dissociating the etchant source, forming an etchant of NH4F and NH4F.HF through the dissociation, producing solid by-products of (NH4)2SiF6 through the reaction between the etchant and an oxide at a low temperature, and annealing the by-products at a high temperature such that the by-products are sublimated into gas-phase SiF4, NH3, and HF.
摘要:
There is provided a method of manufacturing a semiconductor light emitting device, the method including: preparing a substrate including first and second main surfaces opposing each other; forming a plurality of protruding parts in the first main surface of the substrate; forming a light emitting stack on the first main surface on which the plurality of protruding parts are formed; forming a plurality of light emitting structures by removing portions of the light emitting stack formed in regions corresponding to groove parts around the plurality of protruding parts; and separating the substrate along the groove parts.
摘要:
Methods of forming a metal silicide layer are provided that include exposing polysilicon through just dry etching (JDE) and recessesing an oxide layer through chemical dry etching (CDE). In particular, dry etching is primarily performed to an extent to expose the polysilicon. Then, CDE is secondarily performed to expose the polysilicon. The CDE process includes selecting an etchant source among combinations of NF3 and NH3, HF and NH3, and N2, H2, and NF3, dissociating the etchant source, forming an etchant of NH4F and NH4F.HF through the dissociation, producing solid by-products of (NH4)2SiF6 through the reaction between the etchant and an oxide at a low temperature, and annealing the by-products at a high temperature such that the by-products are sublimated into gas-phase SiF4, NH3, and HF.
摘要:
There is provided a method for manufacturing a nitride semiconductor light emitting device, including: forming a light emitting structure including first and second conductive nitride semiconductor layers on a substrate and an active layer formed therebetween; forming the first conductive nitride semiconductor layer, the active layer, and the second conductive nitride semiconductor layer in sequence; forming a first electrode connected to the first conductive nitride semiconductor layer; forming a photo-resist layer on the second conductive nitride semiconductor layer so as to expose a portion of the semiconductor layer; and removing the photo-resist layer after a reflective metal layer and a barrier metal layer serving as a second electrode structure are successively formed on the second conductive nitride semiconductor layer exposed by the photo-resist layer.
摘要:
There is provided a method of manufacturing a semiconductor light emitting device, the method including: forming a light emitting structure by sequentially growing an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer on a substrate; forming a transparent electrode on the p-type nitride semiconductor layer through a sputtering process; and forming a nitrogen gas atmosphere in an interior of a reaction chamber in which the sputtering process is performed, prior to or during the sputtering process.In the case of the semiconductor light emitting device obtained according to embodiments of the invention, a deterioration phenomenon in electrode characteristics caused due to a nitrogen vacancy may be minimized in manufacturing a transparent electrode through a sputtering process to thereby allow for the provision of a transparent electrode having significantly improved electrical characteristics.
摘要:
A method of forming a metal interconnection includes the steps of forming a first conductive layer on a substrate, and forming an insulating layer on the first conductive layer and on the substrate. A contact hole is formed in the insulating layer thereby exposing a portion of the first conductive layer, a barrier layer is formed on the exposed portion of the first conductive layer in the contact hole, and a thermal treatment is performed on the barrier layer. After the step of performing the thermal treatment, a wetting layer is formed on a sidewall of the contact hole, and a second conductive layer is formed on the barrier layer and on the wetting layer in the contact hole.
摘要:
Disclosed are a semiconductor light emitting device and a method of manufacturing the same. The method includes providing a substrate having first and second main surfaces opposing each other and forming a first uneven structure in the first main surface, forming a sacrificial layer on the first main surface of the substrate, forming a mask having open regions on the sacrificial layer so as to expose a portion of an upper surface of the sacrificial layer, forming a second uneven structure in the substrate by etching the sacrificial layer and the substrate through the open regions, removing the sacrificial layer and the mask from the substrate, and forming a light emitting stack on the first and second uneven structures of the substrate.
摘要:
A wiring structure of a semiconductor device comprises an insulating interlayer, a plug and a conductive pattern. The insulating interlayer has an opening therethrough on a substrate. The plug includes tungsten and fills up the opening. The plug is formed by a deposition process using a reaction of a source gas. A conductive pattern structure makes contact with the plug and includes a first tungsten layer pattern and a second tungsten layer pattern. The first tungsten layer pattern is formed by the deposition process. The second tungsten layer pattern is formed by a physical vapor deposition (PVD) process.
摘要:
Disclosed are a semiconductor light emitting device and a method of manufacturing the same. The method includes providing a substrate having first and second main surfaces opposing each other and forming a first uneven structure in the first main surface, forming a sacrificial layer on the first main surface of the substrate, forming a mask having open regions on the sacrificial layer so as to expose a portion of an upper surface of the sacrificial layer, forming a second uneven structure in the substrate by etching the sacrificial layer and the substrate through the open regions, removing the sacrificial layer and the mask from the substrate, and forming a light emitting stack on the first and second uneven structures of the substrate.
摘要:
There is provided a method of manufacturing a semiconductor light emitting device, the method including: forming a light emitting structure by sequentially growing an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer on a substrate; forming a transparent electrode on the p-type nitride semiconductor layer through a sputtering process; and forming a nitrogen gas atmosphere in an interior of a reaction chamber in which the sputtering process is performed, prior to or during the sputtering process.In the case of the semiconductor light emitting device obtained according to embodiments of the invention, a deterioration phenomenon in electrode characteristics caused due to a nitrogen vacancy may be minimized in manufacturing a transparent electrode through a sputtering process to thereby allow for the provision of a transparent electrode having significantly improved electrical characteristics.