Abstract:
When a distortion of an output waveform of an alternating-current generator is improved, an output voltage control apparatus of a generator, which has versatility, is obtained. An output voltage control apparatus of a generator (1), including a generator winding (2) and an excitation winding (3) wound around a stator side, a field winding (5) wound around a rotor (4), and a rectifier (12) for rectifying a current generated by the excitation winding (3) and supplying the rectified current to the field winding (5), the output voltage control apparatus includes a field current drive means (20) for comparing an output voltage generated to the generator winding (2) with a reference wave whose distortion ratio is 0% and flowing a field current to the field winding (5) by adjusting a drive timing of a PWM signal output by a drive unit (24) based on a result of the comparison.
Abstract:
Output waveform of the generator is improved through stabilization of field current by removing flywheel diode used to be required for automatic voltage regulator. Output electric current of excitation winding 3 is rectified by rectifier 8 and is supplied to field winding 5 of rotor 4. Impedance adjustment circuit 12 is provided to circuit where field current flows. Target electric current determination unit 10 determines target electric current (target field current) used to control output voltage of power generation winding 2 to the reference voltage. Impedance adjustment circuit 12 increases or decreases the impedance of field current circuit so that the field current detected by electric current detector 11 converges with target electric current.
Abstract:
The present invention provides a solar cell that can be utilized as a stable electric power source for cloudy weather. An output voltage V1 of the solar cell 1 is lowered by a DC-DC converter 5. When a battery V2 is charged with an output of the converter 5, the converter 5 is stopped and the power of only the battery V2 is supplied to a low-voltage inverter circuit 6. The electric power supplied from the converter 5 is increased by boosting the output voltage of the converter 5 as well as starting to supply electric power from the battery V2. While the electric power of the converter 5 is increased, the performance of the solar cell 1 is judged. When the performance is decreased, the output voltage from the converter 5 is lowered and the amount of electric power supplied from the battery 2 is increased relatively.
Abstract:
A diagram recognizing system is capable of automatically recognizing a diagram prepared, for example, through a manual operation or through drawing software, independently from a CASE tool or the like, and delivering a recognized logic to the CASE tool or the like without the aid of any manual operation. A recognizing rule for recognizing the diagram as the object of recognition is entered and stored. A symbol, a connecting line, a character string, and a relationship of connection between the symbols, each structuring the diagram, are recognized on the basis of the recognizing rule by a diagram recognizing means. Logical data, indicative of the kind of each of the symbols, the character string, and the relationship of connection between the symbols, are generated, and the logical data are converted into and generated as a predetermined file type so as to be delivered directly to the CASE tool or the like.
Abstract:
The positions of lines connecting nodes are selected such that the lines do not overlap nodes other than those which they are connecting. This is based on the position information of nodes within the network diagram, and connection information indicating which nodes are connected by the node-connecting lines. Node-connecting lines which are to be connected are generated in these selected positions, using straight lines or curved lines.
Abstract:
A rising temperature of components of an electric generator is restrained without deteriorating the quality of electricity output and the user-friendliness of the electric generator. AVR (7) and a temperature detecting means (75) is provided in a generator housing. While the detected temperature is greater than the limitation starting temperature, the output voltage is decreased by decreasing the control target value (for the AVR (7)) in accordance with the temperature. A range between the power generation stopping temperature as an upper-limit temperature of a generator component and the limitation starting temperature set to be a lower than the power generation stopping temperature is defined as a voltage droop range. In the voltage droop range, the control target value is decreased in accordance with a target voltage base value preset in a relationship with the temperature so that the decrease degree becomes greater in proportion to a rising temperature.
Abstract:
When a distortion of an output waveform of an alternating-current generator is improved, an output voltage control apparatus of a generator, which has versatility, is obtained. An output voltage control apparatus of a generator (1), including a generator winding (2) and an excitation winding (3) wound around a stator side, a field winding (5) wound around a rotor (4), and a rectifier (12) for rectifying a current generated by the excitation winding (3) and supplying the rectified current to the field winding (5), the output voltage control apparatus includes a field current drive means (20) for comparing an output voltage generated to the generator winding (2) with a reference wave whose distortion ratio is 0% and flowing a field current to the field winding (5) by adjusting a drive timing of a PWM signal output by a drive unit (24) based on a result of the comparison.
Abstract:
A generator (100) includes a generator winding (103) and an excitation winding (104), and a field winding (102). To converge an output voltage of the generator winding (103) to a target, a field current is varied by increasing/decreasing an energization duty ratio of a switching device (110) connected to the field winding (102). In a duty ratio zero determination unit (2) and a duty ratio zero continuation determination unit (3), when an output duty ratio continues for a predetermined time with duty ratio zero, a duty ratio increase amount restriction unit (4) restricts an upper limit of the duty ratio to a predetermined upper limit when the field current increases. A duty ratio restriction unit (21a) for restricting the duty ratio by a maximum value determined based on a voltage of a smoothing capacitor (113) in place of the determination of the duty ratio being zero may be provided.
Abstract:
A rising temperature of components of an electric generator is restrained without deteriorating the quality of electricity output and the user-friendliness of the electric generator. AVR (7) and a temperature detecting means (75) is provided in a generator housing. While the detected temperature is greater than the limitation starting temperature, the output voltage is decreased by decreasing the control target value (for the AVR (7)) in accordance with the temperature. A range between the power generation stopping temperature as an upper-limit temperature of a generator component and the limitation starting temperature set to be a lower than the power generation stopping temperature is defined as a voltage droop range. In the voltage droop range, the control target value is decreased in accordance with a target voltage base value preset in a relationship with the temperature so that the decrease degree becomes greater in proportion to a rising temperature.
Abstract:
In a self-excited generator 1 including an automatic voltage regulator (AVR) 10, a condensive load protection device includes: a field current control driver 21 which is connected to the field winding 6 in series and controlled to be ON/OFF by a drive circuit 23 of the AVR 10 to supply a field current to the field winding 6; and a condensive load protecting rotor short-circuit driver 22 which is connected in parallel to the field winding 6, and supplies a short-circuit current to the field winding 6 by being turned ON, and a bootstrap circuit 30 is connected as a drive power supply of the field current control driver and the condensive load protecting rotor short-circuit driver, and the bootstrap circuit 30 includes a capacitance portion 32 in which charges are accumulated when the field current control driver 21 is ON.