摘要:
A test pattern generating apparatus includes an extractor configured to extract a plurality of layout parameters (elements) of a circuit under test based on gate net information and layout information of the circuit, and to link the layout parameters (elements) with corresponding fault models respectively. A weight calculator is configured to calculate a weight for each fault model linked with the layout parameters (elements) for both a plurality of undetected faults of the fault model and a plurality of faults detected by a plurality of test patterns, based on process failure (defect) information and layout parameter (element) information. An automatic test pattern generator is configured to generate the test patterns in accordance with the weight of each fault model linked with the layout parameters (elements).
摘要:
A semiconductor integrated circuit device includes a test target circuit, a control circuit, and an observation circuit. The control circuit generates a reset signal, and an operation mode signal. The observation circuit is controlled by the signals, and receives input data from observation points in the test target circuit. The observation circuit includes a plurality of flip-flops. The observation circuit performs a reset operation in response to the reset signal. The observation circuit selectively performs a signature-compression operation, and a serial operation of outputting the test result, in response to the operation mode signal. The signature-compression operation is performed, using input data generated in the test target circuit in accordance with test patterns for a normal functional operation.
摘要:
A test pattern generating apparatus includes an extractor configured to extract a plurality of layout parameters (elements) of a circuit under test based on gate net information and layout information of the circuit, and to link the layout parameters (elements) with corresponding fault models respectively. A weight calculator is configured to calculate a weight for each fault model linked with the layout parameters (elements) for both a plurality of undetected faults of the fault model and a plurality of faults detected by a plurality of test patterns, based on process failure (defect) information and layout parameter (element) information. An automatic test pattern generator is configured to generate the test patterns in accordance with the weight of each fault model linked with the layout parameters (elements).
摘要:
A circuit quality evaluation method obtains an indicator linked to the quality of a circuit by applying information representing a minimum delay margin of a path passing through an assumed fault site, a machine cycle, and a delay fault occurrence frequency. Further, the circuit quality evaluation method evaluates the quality of the circuit based on the indicator.
摘要:
A semiconductor integrated circuit device includes a test target circuit, a control circuit, and an observation circuit. The control circuit generates a reset signal, and an operation mode signal. The observation circuit is controlled by the signals, and receives input data from observation points in the test target circuit. The observation circuit includes a plurality of flip-flops. The observation circuit performs a reset operation in response to the reset signal. The observation circuit selectively performs a signature-compression operation, and a serial operation of outputting the test result, in response to the operation mode signal. The signature-compression operation is performed, using input data generated in the test target circuit in accordance with test patterns for a normal functional operation.
摘要:
A test-facilitating circuit selectively carries out tests for self-testing and for fault diagnosis and failure analysis. In a test for fault diagnosis or failure analysis, necessary test data are supplied from outside the circuit and microprograms for self-testing are used. When carrying out a test for fault diagnosis or failure analysis, a test data generating circuit for self-testing is inhibited from outputting test data to an internal bus and test data are taken in by the internal bus from external input terminals in accordance with a microinstruction.
摘要:
An information processing system composed of a plurality of circuit blocks operative in an normal operation mode and in a self-diagnosis mode comprises: a clock signal generating circuit for generating a basic clock signal in the normal operation mode, and a first clock signal with a period. N times (N=2, 3, . . . ) as long as that of the basic clock signal and a second clock signal out of phase from the first clock signal by a delay less than one cycle of the first clock signal in the self-diagnosis mode; a memory for storing microinstructions for self-diagnosis operative in synchronism with the basic clock signal in the normal operation mode, and in synchronism with the first clock signal in the self-diagnosis mode; a decoder for inputting and decoding the mlcroinstructions for self-diagnosis stored in the memory; a test data generating circuit for generating test data in accordance with the decoded results obtained by the decoder in synchronism with the first clock signal at the self-diagnosis mode; first type circuit blocks operative in synchronism with the basic clock in the normal operation mode, for storing test data generated by said test data generating means In synchronism with the second clock and outputting test data therein In synchronism with the first clock In the self-diagnosis mode; second type circuit blocks for outputting output data corresponding to the test data provided in synchronism with the basic clock signal in the normal operation mode, and in synchronism with the first clock in the self-diagnosis mode; and a signature compressing circuit for inputting the test resultant data outputted from the circuit blocks to diagnose the operation of the circuit blocks, in synchronism with the second clock signal in the self-diagnosis mode.
摘要:
A logic circuit for a built-in self test or for a built-in logic block observer responds to at least first and second input signals and control signals. The circuit includes a first circuit with two outputs, one for always outputting the second input signal, and the other for outputting the second input signal and the inverse value thereof according to a first control signal, a second circuit for selecting and outputting one of the two outputs of the first circuit according to the first input signal, then outputting an exclusive OR value or an exclusive NOR value of the first input signal and the second input signal, and a third circuit for providing a third input signal or a fixed value as a second input signal to the first circuit according to a second control signal. The inversion functions for obtaining an adequate polarity of signals employing clocked inverters, or transfer gates and an inverter. The logic functions also employ cascaded flip-flop circuits and a linear feedback shift register.
摘要:
A semiconductor integrated circuit according to one embodiment includes a plurality of flip-flop groups configured by dividing a plurality of flip-flops, connected in series, for carrying out a serial operation of serially transferring data, a continuous signal determination circuit configured to output a first signal if outputs of the flip-flops contained in the flip-flop group match, and output a second signal in other cases; and a clock gating circuit configured not to provide a clock signal when receiving the first signal and to provide a clock signal when receiving the second signal with respect to the flip-flops other than a head of the flip-flop group.
摘要:
The method for creating a test pattern and calculating a fault coverage or the like of the present invention is characterized by creating bridging fault voltage information indicating a voltage of a bridging assumed on the wire derived from an output terminal of a cell, calculating a logical threshold of an input terminal of the cell, extracting bridging fault information on an adjacent wire pair, calculating a detection limit resistance value using the logical threshold, adding the detection limit resistance value to bridging fault voltage information, creating extended bridging fault voltage information, creating a bridging fault list including a bridging fault type based on the extended bridging fault voltage information, creating a test pattern based on the bridging fault list, judging whether or not a bridging fault can be detected through this test pattern, creating fault detection information and calculating a weighted fault coverage based on the fault detection information and bridging fault generation information.