Abstract:
A digitally controlled oscillator is provided. The digitally controlled oscillator includes a pair of transistors cross-coupled to each other, a switched capacitor array coupled to the pair of transistors and a plurality of frequency tracking units coupled to the pair of transistors. The pair of transistors provides an output signal. The switched capacitor array tunes a frequency of the output signal. The frequency tracking units tune the frequency of the output signal to a target frequency. At least one of the frequency tracking units is capable of selectively providing a first capacitance and a second capacitance. A tuning resolution of the frequency tracking unit is determined by a difference between the first and second capacitances.
Abstract:
A wireless communication receiver includes a first signal processing circuit, a second signal processing circuit, and a detecting circuit. The first signal processing circuit generates a first processed signal by processing a received radio frequency (RF) signal. The second signal processing circuit is coupled to the first signal processing circuit. The detecting circuit monitors a specific signal of the first signal processing circuit and generates at least a control signal to the second signal processing circuit in response to a signal level of the monitored specific signal. The control signal controls the second signal processing circuit to switch from a first operation mode to a second operation mode.
Abstract:
A tunable inductor includes a main wiring and at least one tuning module. The main wiring is arranged to encircle an inductor area of the tunable inductor. In addition, the tuning module is arranged to couple associated nodes of the main wiring. For example, each tuning module of the at least one tuning module includes a first switch positioned within the inductor area, and further includes at least one auxiliary wiring. When the first switch is turned on, the tuning module couples two nodes of the main wiring, where the at least one auxiliary wiring is arranged to couple the two nodes when the first switch is turned on. In particular, a patterned ground plane is arranged to decrease the energy loss of the tunable inductor, and more particularly, to prevent the tunable inductor from suffering energy loss. The patterned ground plane includes some conductive sections forming a W-like shape.
Abstract:
An interference-robust receiver includes an RF signal processor, a frequency conversion interface and an analog signal processor. The RF signal processor provides an RF signal. The frequency conversion interface includes a passive mixer for generating an intermediate frequency signal by down-converting an in-band part of the RF signal to a passband of a filter and down-converting an out-of-band part of the RF signal to a stopband of the filter. The filter can thus filter the intermediate frequency signal with the passband and the stopband.
Abstract:
A dynamic current steering mixer. The dynamic current steering mixer comprises a Gilbert cell mixer core, a pair of load devices, a dynamic current steering cell, and a transconductor cell. The Gilbert cell mixer core has first and second nodes, receives a first differential input signal, and provides a differential output signal at the first nodes thereof. The load devices are respectively coupled between the first nodes of the Gilbert cell mixer core and a first fixed voltage. The dynamic current steering cell has third nodes coupled to the second nodes and fourth nodes. The transconductor cell is coupled between the fourth nodes and a second fixed voltage and receives a second differential input signal. The dynamic current steering cell alternately steers current of the transconductor cell to or away from the Gilbert cell mixer core.
Abstract:
An interference-robust receiver includes an RF signal processor, a frequency conversion interface and an analog signal processor. The RF signal processor provides an RF signal. The frequency conversion interface includes a passive mixer for generating an intermediate frequency signal by down-converting an in-band part of the RF signal to a passband of a filter and down-converting an out-of-band part of the RF signal to a stopband of the filter. The filter can thus filter the intermediate frequency signal with the passband and the stopband.
Abstract:
A dynamic current steering mixer. The dynamic current steering mixer comprises a Gilbert cell mixer core, a pair of load devices, a dynamic current steering cell, and a transconductor cell. The Gilbert cell mixer core has first and second nodes, receives a first differential input signal, and provides a differential output signal at the first nodes thereof. The load devices are respectively coupled between the first nodes of the Gilbert cell mixer core and a first fixed voltage. The dynamic current steering cell has third nodes coupled to the second nodes and fourth nodes. The transconductor cell is coupled between the fourth nodes and a second fixed voltage and receives a second differential input signal. The dynamic current steering cell alternately steers current of the transconductor cell to or away from the Gilbert cell mixer core.
Abstract:
A programmable automatic signal amplitude control circuit, comprising a variable gain amplifier and a negative feedback circuit. The negative feedback circuit includes a first circuit, and a second circuit having a peak detector, a level adjustable amplifier, and a voltage/current converter, and a capacitor. Using a first current applied from the first circuit and a second current applied from the second circuit to control a control signal, signal amplitude is controlled to approach a setup amplitude.
Abstract:
A wireless communication receiver includes a first signal processing circuit, a second signal processing circuit, and a detecting circuit. The first signal processing circuit generates a first processed signal by processing a received radio frequency (RF) signal. The second signal processing circuit is coupled to the first signal processing circuit. The detecting circuit monitors a specific signal of the first signal processing circuit and generates at least a control signal to the second signal processing circuit in response to a signal level of the monitored specific signal. The control signal controls the second signal processing circuit to switch from a first operation mode to a second operation mode.
Abstract:
An integrated circuit device includes at least one controllable oscillator including a first control port and at least one further control port, at least one frequency control module including an output arranged to provide a frequency control signal. The at least one controllable oscillator further includes at least one compensation module including an output arranged to provide at least one compensation signal. The at least one compensation module includes an integrator component arranged to receive at an input thereof a signal that is representative of a difference between the indication of the frequency control signal and a reference signal, and to output an integrated difference signal. The at least one compensation module is arranged to generate the at least one compensation signal based at least partly on the integrated difference signal output by the integrator component.