Abstract:
To improve an anti-heat shock performance and an electric field concentration relaxation (an insulation performance) between a secondary coil and a center core, to attain a narrow diameter structure in an individual ignition type ignition coil and further to improve an assembling working of the ignition coil. The individual ignition type ignition coil is adopted to an engine having a plastic head cover. A secondary coil 3 is positioned at an inner side of a primary coil 5 and between a secondary bobbin 2 and a center core 1 a soft epoxy resin 17 is filled up. In the secondary bobbin 2, a secondary coil low voltage side is a potting side of the soft epoxy resin 17 and an inclination having a difference in an inner diameter is provided on the inner diameter in which the secondary coil low voltage side is formed large and secondary coil high voltage side is formed small. In the secondary bobbin, a thickness in the secondary coil low voltage side is formed thin and a thickness in the secondary coil high voltage side is formed thick. The soft epoxy resin 17 has a dent 17′ according to a compression molding and has a glass transition point Tg which satisfies a condition of [an allowable stress of the secondary bobbin
Abstract:
A long and narrow shape independent ignition type ignition apparatus has a long and narrow shape center core for an internal combustion engine. At least one of magnet member and a rubber material member is arranged at an end portion of the center core. A circumference of the center core including said magnet member and said rubber material member is surrounded using a soft material member.
Abstract:
In order to reduce the bulk and weight of the upper igniter case division of the armor case, and to lower the center of gravity of the total apparatus so as to provide an igniter which is tough to oscillate, the igniter for the internal combustion engine has the armor case equipped with the coil department and igniter unit therein, and said armor case has the igniter case having the coil department case and the connector department. Furthermore, the coil department case is inserted in the plug hole of the internal combustion engine. The igniter unit is mounted in the igniter case. Furthermore, the igniter unit has a semiconductor device of a simple substance silicon chip having integrated therein a semi-conductor for switching and a current limiting circuitry. The semi-conductor for switching consists of an insulated bipolar transistor (IGBT) or a power transistor.
Abstract:
An ignition apparatus is received in a plug hole which is formed by a cylinder head and a cylinder head cover of an internal combustion engine. A side core has a slit between two horizontally extending side wall ends. The side core is selected from a laminated sheet structure comprised of two grain oriented silicon steel sheets, each having a slit between two horizontally extending side wall ends, and the plural slits align at substantially the same position. The slit prevents a one-turn short of a magnetic flux of the side core. Thereby a predetermined secondary voltage more than an engine requirement secondary voltage is obtained. An ignitor reception portion has an independent and individual ignitor reception portion and an independent and individual coil reception portion, with the ignitor reception portion and the coil reception portion being combined.
Abstract:
An internal combustion engine ignition coil device has an annular seal rubber at its lower side coil. An annular projection is provided on a part of the seal rubber and is pressed against the inner diameter surface of a plug hole. An air path is formed in part of a coil case by mounting the seal rubber into a groove, enabling inside and outside portions of the plug hole to communicate. A gas-permeable thin film resin member is bonded to an inlet of the air path.
Abstract:
An internal combustion engine ignition coil device has an annular seal rubber at its lower side coil. An annular projection is provided on a part of the seal rubber and is pressed against the inner diameter surface of a plug hole. An air path is formed in part of a coil case by mounting the seal rubber into a groove, enabling inside and outside portions of the plug hole to communicate. A gas-permeable thin film resin member is bonded to an inlet of the air path.
Abstract:
An ignition coil device for an internal combustion engine, which has a superior waterproof property and can be reduced in size and easily produced. An annular seal rubber (2) is mounted to the lower side of an ignition coil device (1). An annular projection (2a) is provided on a part of the seal rubber and is pressed against the inner diameter surface of a plug hole. A substantially L-shaped groove for forming an air path (4) is formed in a part of a coil case (1a). The air path (4) is formed by mounting the seal rubber (2) into the groove, enabling the inside and the outside of the plug hole to communicate with each other. A thin film resin member (3) with a porous structure being permeable to gas but not to liquid is fixedly bonded to an inlet (4a) of the air path (4) to prevent water from entering the plug hole. Those features realize the ignition coil device for the internal combustion engine, which has a superior waterproof property and can be reduced in size and easily produced.
Abstract:
A long and narrow shape independent ignition type ignition apparatus has a long and narrow shape center core for an internal combustion engine. At least one of magnet member and a rubber material member is arranged at an end portion of the center core. A circumference of the center core including said magnet member and said rubber material member is surrounded using a soft material member.
Abstract:
In order to reduce the bulk and weight of the upper igniter case division of an armor case, and to lower the center of gravity of the total apparatus so as to provide an igniter which is tough to oscillate, the igniter for the internal combustion engine has the armor case equipped with a coil compartment and igniter unit. The armor case has the igniter case having the coil case and connector. Furthermore, the coil compartment case is inserted in the plug hole of the internal combustion engine. The igniter unit is mounted in the igniter case. Furthermore, the igniter unit has a semiconductor device of a single substance silicon chip having integrated therein a semi-conductor for switching and a current limiting circuitry. The semi-conductor for switching consists of an insulated bipolar transistor (IGBT) or a power transistor.
Abstract:
An ignition device for an internal-combustion engine, in which a pocket section is provided in a case for holding primary and secondary coils, and an ignition module is built in the pocket section. In the ignition module a relay member is secured on a heat sink, a connecting terminal electrically connected to an internal terminal is installed to the relay member, and the connecting terminal and a hybrid IC substrate are electrically connected by an aluminum wire.