Abstract:
A plurality of surface emitting lasers are formed on the single surface emitting laser element. The plurality of surface emitting lasers have respective emission wavelengths selected from wavelengths satisfying condition of: 0
Abstract:
According to one embodiment, a light source includes a plurality of light-emitting elements each including one or more surface-emitting lasers; and a plurality of detecting elements located on a same substrate as the light-emitting elements. The detecting elements individually detect quantities of output light of the light-emitting elements.
Abstract:
An optical device according to an embodiment of the present disclosure includes a light source in which a plurality of light emitting elements are arranged at a predetermined distance, an optical system configured to convert light beams from the plurality of light emitting elements into line light beams, and a light deflection element configured to deflect each of the line light beams. Each of the line light beams is caused to be incident on the light deflection element such that a longitudinal direction of each of the light beams is aligned with a direction of a rotating axis of the light deflection element.
Abstract:
There is provided an improved light source including a plurality of light emitting elements in a surface. An arrangement of the plurality of light emitting elements fulfills, in an assumed projection area, an element interval at which irradiation light beams of the plurality of light emitting elements overlaps, and fulfills an element interval at which a speckle pattern of each of the irradiation light beams obtained in the assumed projection area is different for each of the irradiation light beams.
Abstract:
An automatic sample preparing apparatus which can automatically perform all the steps of a sample preparation process from smearing of sample onto a slide glass to dyeing the smeared sample and with which there is no wasting of dyeing liquid even when only a small number of samples are to be dyed and the degree of freedom of slide glass handling and control is high. The apparatus can include a smearing part, cassettes, a carrying part, a loading part, a dyeing part and a storing part. The smearing part functions to smear samples onto slide glasses. Each cassette has a holding part which can hold slide glasses and a liquid and a pair of hanging support parts connected to this holding part. The carrying part carries the cassettes. The loading part loads the slide glasses one by one into the cassettes. The dyeing part performs dyeing of the smeared sample on the slide glasses. The storing part stores cassettes containing slide glasses with sample smeared thereon and dyed.
Abstract:
A phototransistor includes a first emitter region, a first base region having at least a portion exposed to a light-receiving side, and a first collector region in this order from the light-receiving side in a depth direction. The first collector region includes a second collector region and a third collector region that is in contact with a downstream side of the second collector region in the depth direction and has a resistance lower than that of the second collector region. The phototransistor further includes a first region that is spaced away from the first base region at an outer side of the first base region on a light-receiving side surface thereof, the first region having a conductivity type opposite to that of the first collector region.
Abstract:
A phototransistor includes a first emitter region, a first base region having at least a portion exposed to a light-receiving side, and a first collector region in this order from the light-receiving side in a depth direction. The first collector region includes a second collector region and a third collector region that is in contact with a downstream side of the second collector region in the depth direction and has a resistance lower than that of the second collector region. The phototransistor further includes a first region that is spaced away from the first base region at an outer side of the first base region on a light-receiving side surface thereof, the first region having a conductivity type opposite to that of the first collector region.
Abstract:
A sheet material identification device includes a humidity adjuster, a detector, and a controller. The humidity adjuster adjusts the humidity of a sheet material by causing the sheet material to either release or absorb moisture. The detector detects the humidity of the sheet material before and after the adjustment of the humidity. The controller calculates a first difference in humidity of the sheet material before and after the adjustment of the humidity, and identifies the type of sheet material on the basis of the first difference.