Abstract:
A polarization mode dispersion (PMD) generating apparatus includes a polarization plane controller; a unit function block including a first differential group delay (DGD) generator, a first mode mixer, and a second DGD generator, a second mode mixer and a reflective mirror, which are arranged in this order from the input side of input light free from PMD. Part of the first and second DGD generators is disposed on a driven stage to modify the optical path length. The input light has polarization converted by the polarization plane controller and is inputted to the first DGD generator to propagate back and forth on an optical path from the unit function block through the second mode mixer to the reflective mirror. In the PMD-generating apparatus, the driven stage adjusts a DGD amount between orthogonal eigen-polarization modes generated in the first and second DGD generators on the basis of an applicable wavelength band.
Abstract:
In a recordable data storage medium on which property data was recorded after having been modulated and on which data that is decodable by a cryptographic key to be generated from the property data was recorded, the property data was preferably modulated by a different method from that applied to a read-only data storage medium. Then, an optical disc drive, having no ability to distinguish the recordable data storage medium from the read-only data storage medium, cannot read the recordable data storage medium. Consequently, a greater number of drives should be equipped with the function of recognizing the type of a given data storage medium and the copyright protection function should be consolidated.
Abstract:
A drive unit includes an ultrasonic actuator, which has an actuator body formed using a piezoelectric element and outputs a driving force by vibration of the actuator body, and a control section which induces vibration in the actuator body by supplying a plurality of AC voltages to the piezoelectric element. The control section provides, in combination, phase control, which controls the driving force by adjusting a phase difference between a first and a second AC voltages, and wave-number control, which controls the driving force by adjusting the wave number included in a predetermined burst period in each AC voltage.
Abstract:
In a recordable data storage medium on which property data was recorded after having been modulated and on which data that is decodable by a cryptographic key to be generated from the property data was recorded, the property data was preferably modulated by a different method from that applied to a read-only data storage medium. Then, an optical disc drive, having no ability to distinguish the recordable data storage medium from the read-only data storage medium, cannot read the recordable data storage medium. Consequently, a greater number of drives should be equipped with the function of recognizing the type of a given data storage medium and the copyright protection function should be consolidated.
Abstract:
In a recordable data storage medium on which property data was recorded after having been modulated and on which data that is decodable by a cryptographic key to be generated from the property data was recorded, the property data was preferably modulated by a different method from that applied to a read-only data storage medium. Then, an optical disc drive, having no ability to distinguish the recordable data storage medium from the read-only data storage medium, cannot read the recordable data storage medium. Consequently, a greater number of drives should be equipped with the function of recognizing the type of a given data storage medium and the copyright protection function should be consolidated.
Abstract:
An optical disc drive includes: an optical head with an actuator and a photodetector; a tracking driver outputting a drive signal to the actuator; a first tracking error signal generator for generating a first tracking error signal based on an output signal of the photodetector; first and second lens position control sections for respectively outputting first and second lens position control signals to the tracking driver; and a selector for selectively supplying the first tracking error signal to the first or second lens position control section according to a moving velocity of the optical head during a seek operation. The first lens position control signal is obtained by extracting signal components, of which the frequencies are equal to or lower than a predetermined frequency, from the first tracking error signal. The second lens position control signal is obtained by extracting DC components of the first tracking error signal at on-track points thereof.
Abstract:
An optical disc that has a recognition mark area behind a recorded area and in which the last data in the recorded area is stably accessed, the recognition mark area can be accessed without bringing about an abnormal state, and the first data in a succeeding recorded area, if it exists, is stably accessed. An unrecorded area (5) is provided outside the recorded area (4) of the optical disc (1). A mark area (6) is provided between the recorded area (4) and unrecorded area (5). A recognition mark area (6d) is provided in the mark area (6) in order to recognize the boundary between the recorded area (4) and the unrecorded area (5). In the mark area (6), first and second buffer areas (6b and 6c) are provided respectively in front of and behind the recognition mark area (6d). The width of the first buffer area (6b) is preset to be wider than the access error when the last data (4a) in the recorded area (4) is accessed, and the width of the second buffer area (6c) is preset to be wider than the access error when the recognition mark area (6d) is accessed.
Abstract:
An imaging device disclosed herein is a device for acquiring image data about a subject, comprising an image acquisition section, a housing, a flash device, and a flash controller. The image acquisition section is configured to continuously acquire a plurality of image data from an optical image of a subject. The housing holds the image acquisition section. The flash device is configured to emit a flash of light, with which the emission angle of the flash light with respect to the housing can be varied. The flash controller is configured to control the flash device so that the emission angle of the flash light when the plurality of image data are being continuously acquired will differ for at least two image data out of the plurality of image data.
Abstract:
The present invention solves the problems that, in a detection circuit which is mostly configured by analog circuits, the chip size cannot be reduced even using a highly-precise processing, there are many external capacitors and terminals thereof, a plurality of high-speed and large-scale AD converters are required for digitization, the detection precision of a small amplitude signal superimposed on an RF signal is deteriorated, and high-speed sample/hold is required.A significant deletion of analog circuits can be realized by generating a digital detection signal directly from an analog RF signal using a simple analog circuit configuration of a detection control means including a comparator, a threshold DAC for setting a threshold value, and an integrator.
Abstract:
The precision of a direction detection signal DIR is judged from the duty ratio of the direction detection signal DIR, and the direction detection signal DIR which is used for track search control or tracking pull-in control is judged as valid or invalid according to the precision, thereby to improve the precision of the track search control or the tracking pull-in control. Therefore, even when the direction detection is not performed accurately due to a difference in the reflected light quantity on the optical disk, a defect on the optical disk, a delay in the track cross speed during search, or a delay in the detection circuit, the track search control and the tracking pull-in control can be performed with stability.