Abstract:
An air-conditioning apparatus is capable of suppressing refrigerant flow noise regardless the refrigerant state of an inlet of an expansion mechanism. In parallel to a flow control valve, an opening and closing valve that opens and closes a refrigerant passage and an expansion mechanism having porous bodies capable of passing a refrigerant therethrough are connected in series with each other. In a heating mode, in the case where a controller stops an operation of one or more of a plurality of indoor units and causes the other indoor unit(s) to operate, the flow control valve of the stopped indoor unit is fully closed and the opening and closing valve of the stopped indoor unit is opened.
Abstract:
A ventilation and air conditioning apparatus for a vehicle includes: a ventilator that sucks air from outside the vehicle; an air conditioner that conditions air inside the vehicle; a duct for fresh outside air that connects the ventilator with the air conditioner so as to supply the air that the ventilator has sucked from outside the vehicle to the air conditioner; and a duct for conditioned air that supplies the conditioned air blown out from the air conditioner to inside the vehicle. The duct for fresh outside air is branched so as to be connected to the duct for conditioned air. With this configuration, even if the operation of the air conditioner is stopped due to, e.g., a leakage of a flammable refrigerant, an amount of ventilation can be secured in the vehicle.
Abstract:
Disclosed is a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant and a refrigeration cycle apparatus in which a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant circulates through a refrigeration cycle so as to avoid occurrence of negative pressure in a low-pressure circuit.The non-azeotropic refrigerant mixture is characterized in that a mixing ratio of a high-boiling refrigerant and a low-boiling refrigerant is determined so that a saturated vapor line where pressure is 0.00 MPa is not higher than −45° C. in a low-pressure circuit formed between the decompressor to the compressor.
Abstract:
An air conditioner capable of conducting a natural circulation operation by circulating refrigerant through an evaporator and a condenser located at a higher position than the evaporator, which are connected with pipes, wherein the air conditioner has means for obtaining an air conditioning load quantity to an outdoor air temperature in a temperature range, means for obtaining an air conditioning ability quantity to an outdoor air temperature in a temperature range in a case of using a predetermined mount of refrigerant, means for obtaining the maximum outdoor air temperature capable of conducting air conditioning at the time when an air conditioning load quantity produced from the means for obtaining an air conditioning load quantity substantially coincides with an air conditioning ability quantity from the means for determining an amount of refrigerant, as an amount to be charged, in which a maximum outdoor air temperature capable of conducting air conditioning among the obtained maximum outdoor air temperatures becomes the maximum.
Abstract:
In a refrigeration cycle using a cooling medium circuit in which a compressor, a heat-source-side heat exchanger, a decompressor, and a user-side heat exchanger are connected successively for circulating a cooling medium, and refrigerating machine oil having no or extremely low mutual solubility to the cooling medium; an internal diameter of a down comer in which a liquid phase cooling medium flows from the upstream side to the down stream side in the refrigeration cycle is adjusted so that the flow velocity of cooling medium in the down comer is made to be higher than that at which refrigerating machine oil floating in a cooling medium goes down.
Abstract:
In a refrigerating cycle using a refrigerant containing hydrofluorocarbon as a main component, of a refrigerant pipe arrangement constituting the refrigerating cycle, a refrigerant pipe extending upward from a lower side to an upper side is made to have an inner diameter not larger than a value which makes the flow rate of the refrigerant be not smaller than a zero penetration flow rate. It is possible to obtain a refrigerating cycle superior in oil returning to a compressor and hence high in reliability, even in the case of using refrigerator oil having no compatibility with a refrigerant containing hydrofluorocarbon as a main component.
Abstract:
A computing device calculates a quality of a refrigerant flowing out of an expansion device on the basis of an inlet liquid enthalpy calculated on the basis of a temperature of the refrigerant flowing into the expansion device, and a saturated gas enthalpy and a saturated liquid enthalpy calculated on the basis of a temperature or pressure of the refrigerant flowing out of the expansion device; calculates a liquid-phase concentration and a gas-phase concentration of the refrigerant flowing out of the expansion device on the basis of the temperature and pressure of the refrigerant flowing out of the expansion device; and calculates a composition of the refrigerant circulating in a refrigeration cycle on the basis of the calculated quality, liquid-phase concentration, and gas-phase concentration.
Abstract:
Disclosed is a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant and a refrigeration cycle apparatus in which a non-azeotropic refrigerant mixture containing tetrafluoropropane as a high-boiling refrigerant circulates through a refrigeration cycle so as to avoid occurrence of negative pressure in a low-pressure circuit.The non-azeotropic refrigerant mixture is characterized in that a mixing ratio of a high-boiling refrigerant and a low-boiling refrigerant is determined so that a saturated vapor line where pressure is 0.00 MPa is not higher than −45° C. in a low-pressure circuit formed between the decompressor to the compressor.
Abstract:
A ventilation and air conditioning apparatus for a vehicle includes: a ventilator that sucks air from outside the vehicle; an air conditioner that conditions air inside the vehicle; a duct for fresh outside air that connects the ventilator with the air conditioner so as to supply the air that the ventilator has sucked from outside the vehicle to the air conditioner; and a duct for conditioned air that supplies the conditioned air blown out from the air conditioner to inside the vehicle. The duct for fresh outside air is branched so as to be connected to the duct for conditioned air. With this configuration, even if the operation of the air conditioner is stopped due to, e.g., a leakage of a flammable refrigerant, an amount of ventilation can be secured in the vehicle.
Abstract:
In the detection of circulating compositions in the cycle of a non-azeotropic refrigerant composed of three or more kinds of refrigerants, there have been drawbacks in that the number of sensors required is large, and large errors are contained in the circulating composition which can be detected. To overcome these drawbacks, the refrigerating and air-conditioning apparatus comprises at least a compressor, a condenser, a pressure reducing device, and an evaporator, and in a refrigerant cycle which uses as a working refrigerant a non-azeotropic refrigerant composed of N kinds (N≧3) of refrigerants and is provided with composition detecting means for detecting the circulating compositions of the non-azeotropic refrigerant, circulating compositions are determined by using (N−2) relations on compositions among a first component to a j-th (2≦j≦N−1) component of the non-azeotropic refrigerant.