Abstract:
A rail-bound vehicle includes an energy storage device having a traction battery and a cooling device for cooling the traction battery using a coolant circulating in at least one coolant circuit. The energy storage device supplies a traction device of the vehicle with electrical energy. At least one air-conditioning device air conditions a passenger compartment of a car of the vehicle using a refrigerant circulating in a refrigerant circuit, and a control device controls the air-conditioning device. The air-conditioning device has a heat exchanger coupling the refrigerant circuit of the air-conditioning device to the coolant circuit of the cooling device of the energy storage device. The control device controls a flow of the refrigerant through the heat exchanger. An energy storage device, an air-conditioning device, an arrangement for cooling a traction battery and a method for controlling the arrangement are also provided.
Abstract:
An air conditioning device is provided. The air conditioning device includes a primary circuit in which a refrigerant circulates, the primary circuit including an evaporator, and a first secondary circuit in which a first fluid circulates. The first fluid passes through the evaporator to exchange heat therein with the refrigerant. The first secondary circuit includes at least one first heat exchanger in which the first fluid exchanges heat with the air. The air conditioning device further includes at least one first compartment in which the primary circuit is housed, an air treatment zone, formed outside the first compartment and intended to communicate with the inside air, and in which the first heat exchanger is housed, and at least one sealed wall, separating the compartment from the air treatment zone. A railway vehicle having an air conditioning device is also provided.
Abstract:
An air conditioning device is provided which has a primary heat pump circuit having at least one primary heat exchanger with the air from the compartment, a primary compressor, a second primary heat exchanger with the outside air, and a primary expander device, and a heat storage reservoir, connected to the primary circuit, in parallel with said first primary heat exchanger with the air from the compartment. The air conditioning device also has a secondary heat pump circuit, including a first secondary heat exchanger with the air from the compartment, a secondary compressor, a second secondary heat exchanger with the air from the outside, and a secondary expander device. The heat storage reservoir is connected to the secondary circuit, in parallel with the first secondary heat exchanger with the air from the compartment.
Abstract:
A vehicle includes at least two cars being interconnected by an open passageway connection and each having an air conditioning system. A detection device detects failure of a climate control function of one of the air conditioning systems. The detection device signals failure of a climate control function of an air conditioning system to a control device. Upon receiving the signal, the control device actuates an exhaust air device of the car affected by the failure of the air conditioning system so that an exhaust air volumetric flow is increased, actuates exhaust fans of the car adjacent the affected car so that the exhaust air volumetric flow thereof is reduced, and actuates the air conditioning system of the adjacent car so that the fresh air component of the conditioned inflowing air is increased. A method for emergency operation of air conditioning systems in such a vehicle is also presented.
Abstract:
A plurality of apparatuses mounted on cars are monitored and controlled by control devices mounted on the cars. A display device capable of displaying apparatus information of the apparatuses is mounted on a driver's cab. A display screen of the display device is configured by arranging a plurality of display components by which apparatus information of each of the apparatuses can be displayed. A software generating device determines arrangement positions of the display components arranged on the display screen, automatically generates layout design data of the display screen, and automatically generates software for generating the display screen on the basis of the layout design data. The arrangement positions of the display components respectively representing the apparatuses when a number of apparatuses of the same type are monitored and controlled by one and the same control device are determined according to arrangement rule information that is exceptional rules.
Abstract:
The air conditioning device (10) includes a heat exchanger (12) intended to exchange heat with the air circulating in the air conditioning device (10), and an air distribution box (14), extending in a longitudinal direction (X) between a front part (14A) and a rear part (14B), and in a transverse direction between two side parts (14C). The distribution box is fastened to a ceiling (5) of the driving cabin (1), and comprises: in its front part (14A), a front inlet (16) for air coming from the cabin (1), connected upstream from the heat exchanger (12), and in each of its side parts (14C), a respective side outlet (18) for conditioned air, connected downstream from the heat exchanger (12).
Abstract:
An arrangement for drying air, particularly for a compressed air installation of a rail vehicle, includes an air dryer that receives air that is to be dried, via an air dryer inlet. In order to optimize the arrangement with regard to external conditions prevailing in the region of a rail bound transportation route to be travelled, an air conditioning installation is provided that supplies air to an air conditioning installation outlet, the air dryer inlet being connected, by way of an air channel particularly designed as an air conduit, to the air conditioning installation outlet such that at least one portion of the air supplied from the air conditioning installation forms the air that is to be dried. The invention also relates to a rail vehicle that includes such an arrangement, and also to a method for drying air.
Abstract:
An air-conditioning system in vehicle is installed in a vehicle in which a vehicle body center position and an aisle center position are different, and has an air conditioner. The air-conditioning system in vehicle has first and second outlets arranged on both sides of the vehicle in a vehicle width direction and discharging conditioned air having substantially the same air volume into an interior, and an air regulating member setting a merging position of air flows discharged from the first and second outlets to the position where the line segment connecting the vehicle body center position and the aisle center position is internally divided at a ratio of between 20:80 and 86:14.
Abstract:
An air-conditioning device has a duct that emits a flow of conditioned air and at least one circulation circuit intended for fitting out a carriage. The circulation circuit includes an air inlet through which passes an incoming airflow from the duct; at least one conduit for distributing air towards a compartment room, extending between an upstream end and a downstream end, both intended to be laid out in the carriage; a conduit for transferring conditioned air towards another adjacent air circulation circuit, which fits out a carriage adjacent to the first; and means for distributing conditioned air from the air inlet, and distributing the incoming airflow among the distribution and transfer conduits.
Abstract:
A heat exchanger for a vehicle air-conditioner includes a plurality of fins arranged parallel to one another and a plurality of heat transfer tubes extending parallel to one another through the fins. The fins are cut by a corrugated cutter from a band material having through-holes through which the heat transfer tubes are to extend. A row pitch Dp of the heat transfer tubes is expressed as “Dp=C+D+2W+28 for 0
Abstract translation:用于车辆空调的热交换器包括彼此平行布置的多个翅片和通过翅片彼此平行延伸的多个传热管。 翅片由具有通孔的带材料的波纹切割器切割,传热管将通过该孔延伸。 传热管的行间距Dp表示为“Dp = C + D + 2W + 28,对于0 <δ