Abstract:
A method of fabricating self-aligned gate trench utilizing TTO spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. Trench capacitors are formed in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Spacers are formed on the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
Abstract:
A method for estimating capacitance of deep trench capacitor in a substrate. After a photoresist layer used to define the region of the lower electrode is formed on an oxide layer doping with a conducting type dopant, the height difference of the photoresist layer between the memory cell array area and the supporting area is measured. The radicand of the height difference is directly proportional to a capacitance of a capacitor to-be-formed in the trenches.
Abstract:
A semiconductor device includes a semiconductor substrate. The semiconductor substrate has a memory array region and a peripheral circuit region; a first active region and a second active region in the peripheral circuit region; a recessed gate disposed on the memory array region, comprising a first gate dielectric layer on the semiconductor substrate, wherein the first gate dielectric layer has a first thickness; and a second gate dielectric layer on the peripheral circuit region, wherein the second gate dielectric layer on the first active layer has a second thickness, and the second gate dielectric layer on the second active layer has a third thickness.
Abstract:
A method for fabricating a MOS transistor with a recess channel, including: providing a substrate with a plurality of trench capacitors therein, wherein a trench top oxide is positioned on top of each trench capacitor and extended away from the substrate surface; forming a first spacer on side walls of the trench top oxide; forming a second spacer on the first spacer; defining a plurality of active areas, wherein each of the active areas is parallel with each other and comprises at least two of the trench capacitors; forming an isolation area between each of the active area; etching the substrate of the active area by using the second spacer as a mask to form a trench in the active area; removing the second spacer to expose a portion of the substrate, and etching the exposed substrate to enlarge the trench; and forming a gate structure in the trench.
Abstract:
A semiconductor device includes a semiconductor substrate. The semiconductor substrate has a memory array region and a peripheral circuit region; a first active region and a second active region in the peripheral circuit region; a recessed gate disposed on the memory array region, comprising a first gate dielectric layer on the semiconductor substrate, wherein the first gate dielectric layer has a first thickness; and a second gate dielectric layer on the peripheral circuit region, wherein the second gate dielectric layer on the first active layer has a second thickness, and the second gate dielectric layer on the second active layer has a third thickness.
Abstract:
A method to determine the predetermined location of a transistor gate of a dynamic random access memory (DRAM). A trench capacitor is respectively provided in a silicon substrate at the two sides of the gate, along the direction of a bit line. The method is to first form a patterned layer of silicon nitride over the substrate so that at the location where the two trench capacitors are desired to be built, the substrate is exposed; then to build the two trench capacitors at the location of the exposed substrate. Form a layer of silicon oxide to cover the capacitors and make the layer of silicon oxide and the layer of silicon nitride at the same level. Layer of silicon nitride is removed afterwards, and a polysilicon layer is conformably formed on the substrate. A BF2 ion implantation is performed twice at different tilt angles on the polysilicon layer in order to define an undoped area between the two trench capacitors. Then remove the undoped area of the polysilicon layer so that part of the silicon substrate is exposed to serve as the predetermined location of transistor gate.
Abstract:
The present invention provides a method for fabricating a trench opening in a semiconductor substrate. The patterned amorphous silicon layer is completely oxidized to form a silicon oxide mask having openings with shrunk critical dimensions. The silicon oxide mask is used as an etching hard mask in the subsequent trench etching process. The present invention is not only suited for the fabrication of trench-capacitor DRAM devices, but also suited for the semiconductor contact/via processes.
Abstract:
A method of fabricating self-aligned gate trench utilizing trench top oxide (TTO) poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a TTO that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
Abstract:
A method to determine the predetermined location of a transistor gate of a dynamic random access memory (DRAM). A trench capacitor is respectively provided in a silicon substrate at the two sides of the gate, along the direction of a bit line. The method is to first form a patterned layer of silicon nitride over the substrate so that at the location where the two trench capacitors are desired to be built, the substrate is exposed; then to build the two trench capacitors at the location of the exposed substrate. Form a layer of silicon oxide to cover the capacitors and make the layer of silicon oxide and the layer of silicon nitride at the same level. Layer of silicon nitride is removed afterwards, and a polysilicon layer is conformably formed on the substrate. A BF2 ion implantation is performed twice at different tilt angles on the polysilicon layer in order to define an undoped area between the two trench capacitors. Then remove the undoped area of the polysilicon layer so that part of the silicon substrate is exposed to serve as the predetermined location of transistor gate.
Abstract:
A method of fabricating self-aligned gate trench utilizing trench top oxide (TTO) poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a TTO that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.