摘要:
A polishing pad, a polishing method and a method of forming a polishing pad are provided. The polishing pad includes a polishing layer and a plurality of arc grooves. The arc grooves are disposed in the polishing layer. Each of the arc grooves has two ends, and at least one end thereof has an inclined wall. The angle between the inclined wall of each groove and the surface plane of the polishing layer is less than 90 degree.
摘要:
A polishing method and a polishing system are provided. By means of adjusting a rotational center of a polishing article corresponding to positions of a polishing pad or polishing pads, a polishing rate of the polishing article surface has a better uniformity, resulted from compensation of polishing rates at the rotational center of the polishing article.
摘要:
A method for fabricating a semiconductor device is described. A gate dielectric layer is formed on a substrate, and several gate structures having a gate conductor, a cap layer and spacers are formed on the gate dielectric layer. A mask layer is formed over the substrate covering a portion of the gate structures. Removing the cap layer and spacers that are not covered by the mask layer. After the mask layer is removed, a dielectric layer is formed over the substrate covering the gate structures. A self-aligned contact hole is formed in the dielectric layer. A conductive layer is formed in the self-aligned contact hole and on the dielectric layer. Since the cap layer and spacers that are not covered by the mask layer are removed and substituted by the dielectric layer having lower dielectric constant property, the parasitic capacitance can be reduced.
摘要:
A method for forming a plug metal layer is disclosed and includes the following steps. Performance of an atomic layer deposition (ALD) at least once to form a continuous metal seed layer (CMSL) on a barrier layer, wherein the atomic layer deposition comprise: a mixing gas of hydrogen and silane, such as hydroxy silane or tetrahydroxy silane, being transported on the barrier layer. Next, performance of a purge/vacuum process. Then transporting a reactive gas, such as WF6, to form the continuous metal seed layer (CMSL). A subsequent cycle step of atomic layer deposition (ALD) can be repeated to form the thickness of the continuous metal seed layer (CMSL) to about 20 to 40 Å.
摘要:
A polishing method, a polishing pad and a polishing system are provided. In the invention, the polishing pad is used to polish a polishing article. The polishing pad includes a polishing layer and a surface pattern disposed in the polishing layer. The polishing layer includes a polishing surface, a rotating central region, and a peripheral region. The surface pattern includes many grooves distributed from near the rotating central region and extending outward to near the peripheral region. The grooves include many groove cross sections along a circumferential direction of a same radius. Each of the groove cross sections has a left sidewall and a right sidewall. An included angle is formed by the polishing surface and one of a group of the left sidewalls and a group of the right sidewalls. The included angle is an obtuse angle.
摘要:
The edge effect or variation in polishing edge profile on a substrate undergoing CMP is reduced by structuring a retaining ring, housed in a carrier head for retaining the substrate, such that the polishing edge profile shifts back and forth with respect to the center of the substrate. Embodiments include structuring the retaining ring such that the width between inner and outer surfaces varies by an amount sufficient to compensate for polishing edge profile variation. Embodiments also include structuring the retaining ring such that the distance from the outer surface to the geometric inner surface varies. Embodiments further include structuring the retaining ring such that the distance between the outer surface to the perimeter of the substrate retained by the inner surface of the retaining ring varies.
摘要:
A polishing pad, comprising a mounting surface and an opposing polishing surface with a polishing pattern having at least one aperture thereon, is formed with an adhesive layer adhered to the mounting surface with uniform adhesive strength therebetween. Embodiments include applying an adhesive layer to the mounting surface with uniform pressure prior to forming the polishing pattern on the polishing surface. Embodiments also include forming the polishing pattern having at least one aperture, forming a fitter having a surface pattern opposite to the polishing pattern and having a projection, positioning the fitter on the polishing pattern so that the projection fills the aperture in the polishing pattern forming a composite having substantially parallel opposing surfaces, applying pressure to bond the adhesive layer to the mounting surface with substantially uniform adhesive strength therebetween, and removing the fitter.
摘要:
The edge effect or variation in polishing edge profile on a substrate undergoing CMP is reduced by structuring a retaining ring, housed in a carrier head for retaining the substrate, such that the polishing edge profile shifts back and forth with respect to the center of the substrate. Embodiments include structuring the retaining ring such that the width between inner and outer surfaces varies by an amount sufficient to compensate for polishing edge profile variation. Embodiments also include structuring the retaining ring such that the distance from the outer surface to the geometric inner surface varies. Embodiments further include structuring the retaining ring such that the distance between the outer surface to the perimeter of the substrate retained by the inner surface of the retaining ring varies.
摘要:
A polishing pad and a polishing method for polishing a substrate are described. The polishing pad includes a polishing layer and at least two grooves. The grooves form polishing tracks respectively. The polishing tracks collectively construct an even tracking zone. A better polishing uniformity of a substrate surface is achieved with the even tracking zone.
摘要:
A MOCVD is performed to form a titanium nitride layer on the surface of a semiconductor substrate. Following that, a pulsed plasma treatment is performed to remove hydro-carbon impurities from the titanium nitride layer. Therein, the pulsed plasma treatment is performed in a pressure chamber comprising nitrogen gas (N2) hydrogen gas (H2) or argon gas (Ar). A pressure of the pressure chamber is controlled to between 1 to 3 Torr, with the power of the pressure chamber controlled to between 500 and 1000 watts.