Abstract:
The invention provides a system for separating oppositely-charged charge carriers, the substrate comprising a semiconductor; a ligand in electrical communication with said semiconductor; an ion-exchange resin attached to the semiconductor; an ion-exchange membrane; and an electrical conduit attaching said resin to said membrane. Also provided is a method for producing hydrogen gas, comprising: inducing charge separation in semiconductor particles so as to produce electrons and holes; oxidizing water with the holes to produce oxygen ions and protons, wherein the protons are sequestered from the oxygen ions as the protons are produced; and directing the sequestered protons to a cathode. The invention also provides a method to produce electricity comprising, inducing charge separation in semiconductor particles so as to produce electrons and holes, and completing the circuit with an electron hole transporter.
Abstract:
A bioreactor with an anode and a cathode, and a plurality of reaction chambers each having an inlet and an outlet and each including a porous solid ion exchange wafer having ion-exchange resins. Each of the reaction chambers is interleaved between a cation exchange membrane and an anion exchange membrane or between either a cation or an anion exchange membrane and a bipolar exchange membrane. A product chamber is separated from one of the reaction chambers by either a cation or an anion exchange membrane. Recirculation mechanism is provided for transporting material between the reaction chamber inlets and outlets. A method of producing organic acids, amino acids, or amines using the separative bioreactor is disclosed.
Abstract:
The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.
Abstract:
A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.
Abstract:
The invention provides a system for separating oppositely-charged charge carriers, the substrate comprising a semiconductor; a ligand in electrical communication with said semiconductor; an ion-exchange resin attached to the semiconductor; an ion-exchange membrane; and an electrical conduit attaching said resin to said membrane. Also provided is a method for producing hydrogen gas, comprising: inducing charge separation in semiconductor particles so as to produce electrons and holes; oxidizing water with the holes to produce oxygen ions and protons, wherein the protons are sequestered from the oxygen ions as the protons are produced; and directing the sequestered protons to a cathode. The invention also provides a method to produce electricity comprising, inducing charge separation in semiconductor particles so as to produce electrons and holes, and completing the circuit with an electron hole transporter.
Abstract:
Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60° C. to about 170° C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.
Abstract:
A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.
Abstract:
An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.
Abstract:
A porous immobilized ion-exchange material is provided. Also provided is an electrodeionization device incorporating the material. A method for subjecting a fluid to electrodeionization, is provided utilizing porous immobilized ion-exchange material. A salient feature of the material is that it can be regenerated in situ.