Abstract:
A control system for a gesture sensing arrangement with at least one sensor operates the sensor in a proximity mode. The control system receives data sets generated by the sensor and based on these data sets determines whether an object is present in a vicinity of the sensor. When an object is detected in the vicinity the control system operates the sensor in a gesture mode. Based on further data generated by the sensor the control system determines an end of a gesture, and operates the sensor in the proximity mode.
Abstract:
The proposed concept relates to an optical sensor arrangement comprising an optical sensor with an integrated circuit arranged in or on a substrate. The substrate comprises at least a first surface area and a second surface area. At least one optically active sensor component is arranged on or in the substrate of the first surface area. The optically active sensor component is arranged for emitting and/or detecting light of a desired wavelength range. Optically inactive sensor circuitry is arranged on or in the substrate of the second surface area. A display panel comprises an active display area and a non-active display area, wherein the non-active display area comprises a material which is optically transparent in the desired wavelength range and wherein the non-active display area at least partly frames the active display layer. The optical sensor and the display panel are stacked such that, with respect to a main direction of display emission, the first surface area is arranged below the non-active display area and the second surface area is arranged below the active display area.
Abstract:
An optical proximity sensor arrangement comprises a first sensor unit with a first emitter and a first detector and a second sensor unit with a second emitter and/or a second detector. The first detector is configured to detect light being emitted by the first emitter and, if applicable, by the second emitter, and being at least partially reflected. If applicable, the second detector is configured to detect light being emitted by the first emitter and being at least partially reflected. A distance between the first emitter and the first detector is, if applicable, less than a distance between the first detector and the second emitter and, if applicable, less than a distance between the first emitter and the second detector.
Abstract:
The proposed concept relates to an optical sensor arrangement comprising an optical sensor with an integrated circuit arranged in or on a substrate. The substrate comprises at least a first surface area and a second surface area. At least one optically active sensor component is arranged on or in the substrate of the first surface area. The optically active sensor component is arranged for emitting and/or detecting light of a desired wavelength range. Optically inactive sensor circuitry is arranged on or in the substrate of the second surface area. A display panel comprises an active display area and a non-active display area, wherein the non-active display area comprises a material which is optically transparent in the desired wavelength range and wherein the non-active display area at least partly frames the active display layer. The optical sensor and the display panel are stacked such that, with respect to a main direction of display emission, the first surface area is arranged below the non-active display area and the second surface area is arranged below the active display area.
Abstract:
An embodiment of a method for compensating variations in an attenuation of light of an optical filter of a light sensor system comprises illuminating a clear sensor and a color sensor of the light sensor system with a test light having a test spectrum. Therein the color sensor comprises the optical filter and is designed to predominantly sense light with a wavelength within a pass band of the filter; and the test spectrum has components outside the pass band. A clear test signal generated by the clear sensor and a color test signal generated by the color sensor are received in particular in response to the illumination with the test light. Then a first transmission value T is determined based on the clear test signal and on the color test signal. Finally, a compensation factor Kr, Kg, Kb is calculated to compensate the variations in the attenuation of light based on the first transmission value T and a nominal transmission value Tn of the filter.
Abstract:
Color light sensors are used to sense colored light and a full spectrum light in order to generate at least three color channel signals and a clear channel signal. An infrared component IR is calculated by summing up the color channel signals with individual weighting factors and subtracting a weighted clear channel signal.
Abstract:
Color light sensors are used to sense colored light and a full spectrum light in order to generate at least three color channel signals and a clear channel signal. An infrared component IR is calculated by summing up the color channel signals with individual weighting factors and subtracting a weighted clear channel signal.