Abstract:
A control system for a gesture sensing arrangement with at least one sensor operates the sensor in a proximity mode. The control system receives data sets generated by the sensor and based on these data sets determines whether an object is present in a vicinity of the sensor. When an object is detected in the vicinity the control system operates the sensor in a gesture mode. Based on further data generated by the sensor the control system determines an end of a gesture, and operates the sensor in the proximity mode.
Abstract:
An optical sensor circuit comprises an optical sensor (DET) designed to provide a sensor signal indicative of light incident on the optical sensor (DET). A clock terminal (CLK) is used to receive a clocked control signal comprising high and low states. A controller unit (CU) is connected to the optical sensor (DET) and to the clock terminal (CLK). The controller unit (CU) is designed to process the sensor signal as a color signal (CTS) in a first mode if the clocked control signal is in high state, and process the sensor signal as an ambient light signal (ALS) in a second mode if the clocked control signal is in low state, and further designed to generate a driving signal (PWM) to drive a light emitting device (LED) to be connected at a control terminal (OUT). The driving signal (PWM) depends on the color and ambient light signal (CTS, ALS).
Abstract:
A module circuit (11) comprises a sensor terminal (43) for feeding a sensor signal (SP) and a clock terminal (41) for feeding a pulse width-modulated clock signal (ST) having a first and a second clock phase (A, B). A signal processing circuit (40) of the module circuit (11) is coupled on the input side to the sensor terminal (43) and the clock terminal (41) and is designed to provide an output signal (SAL) dependent on the sensor signal (SP) that can be tapped in the first clock phase (A) and independent of the sensor signal (SP) that can be tapped in the second clock phase (B).
Abstract:
A method for gesture detection comprises pre-processing and main-processing steps, wherein the pre-processing comprises emitting light using a light emitting device and generating of directional sensor signals as a function of time by detecting a fraction of the emitted light reflected by means of a movable object using a directional light sensor array). The main-processing comprises calculating coordinates as a function of time by using the directional sensor signals, being indicative of a position of the object with reference to a plane parallel to a principal plane of the light sensor array, and detecting a movement of the object depending on the timing of the coordinates.
Abstract:
A module circuit (11) comprises a sensor terminal (43) for feeding a sensor signal (SP) and a clock terminal (41) for feeding a pulse width-modulated clock signal (ST) having a first and a second clock phase (A, B). A signal processing circuit (40) of the module circuit (11) is coupled on the input side to the sensor terminal (43) and the clock terminal (41) and is designed to provide an output signal (SAL) dependent on the sensor signal (SP) that can be tapped in the first clock phase (A) and independent of the sensor signal (SP) that can be tapped in the second clock phase (B).
Abstract:
The semiconductor device comprises an emitter of electromagnetic radiation, a photodetector enabling a detection of electromagnetic radiation of a specific wavelength, a filter having a passband including the specific wavelength, the filter being arranged on the photodetector, the emitter and/or the filter being electrically tunable to the specific wavelength, and a circuit configured to determine a time elapsed between emission and reception of a signal that is emitted by the emitter and then received by the photodetector.
Abstract:
A circuit arrangement for an optical monitoring system comprises a driver circuit which is configured to generate at least one driving signal for driving the light source. A detector terminal is arranged for receiving a detector current from an optical detector. A gain stage is connected at its input side to the driver circuit for receiving the driving signal and generates a noise signal depending on the driving signal. A processing unit is configured to generate an output signal depending on the detector current and the noise signal.
Abstract:
A circuit arrangement for an optical monitoring system comprises a driver circuit configured to generate at least one driving signal for driving a light source and a detector terminal for receiving a detector current. The circuit arrangement further comprises a current source configured and arranged to generate at the detector terminal a reduction current. The reduction current has an amplitude which is given by a base value whenever none of the least one driving signal assumes a value suitable for activating the light source and by a sum of the base value and a reduction value otherwise. The circuit arrangement also comprises a processing unit configured to generate an output signal depending on a combination of the detector current and the reduction current.
Abstract:
A circuit arrangement for an optical monitoring system comprises a driver circuit which is configured to generate at least one driving signal for driving the light source. A detector terminal is arranged for receiving a detector current from an optical detector. A gain stage is connected at its input side to the driver circuit for receiving the driving signal and generates a noise signal depending on the driving signal. A processing unit is configured to generate an output signal depending on the detector current and the noise signal.
Abstract:
A flash driver to limit a load current for a flash comprises a dc/dc converter (DCDC) having a first input (IN1) to receive an input voltage (Vin) and an output (OUT) to supply an output voltage (Vout). The dc/dc converter is designed to convert the input voltage (Vin) to the output voltage (Vout). Furthermore the flash driver has an adjustable current source (Iadj) connected between the output (OUT) and a load terminal (LT). A first control unit (CTRL—1) is connected to the first input (IN1) and coupled to the adjustable current source (Iadj), and is designed to compare the input voltage (Vin) to a threshold (Vth) and, if the comparison indicates the input voltage (Vin) being smaller than the threshold value (Vth), adjust the adjustable current source (Iadj) such that the input voltage (Vin) is equal or greater than the threshold value (Vth). A second control unit (CTRL—2) is coupled to the adjustable current source (Iadj) and the dc/dc converter (DCDC) and is designed to detect a voltage drop over the adjustable current source (Iadj) and to set the dc/dc converter (DCDC) to control the conversion of input voltage (Vin) to the output voltage (Vout) depending on the detected voltage drop.