Abstract:
An interface device includes a movable button connected to a frame structure by resilient structures positioned laterally between the button and the frame structure. Multiple layers or diaphragms of material can be used to make the button, frame, and resilient structures. Movement of the button can trigger a switch or sensor in a manner allowing an electronic device to detect interaction with the button. The interface device can be implemented in an electronic device such as a keyboard that has a low number of parts yet also providing tactile, stabilized key travel, support for various sensor or switch types for the keys, and, in some cases, haptic feedback.
Abstract:
An interface device includes a movable button connected to a frame structure by resilient structures positioned laterally between the button and the frame structure. Multiple layers or diaphragms of material can be used to make the button, frame, and resilient structures. Movement of the button can trigger a switch or sensor in a manner allowing an electronic device to detect interaction with the button. The interface device can be implemented in an electronic device such as a keyboard that has a low number of parts yet also providing tactile, stabilized key travel, support for various sensor or switch types for the keys, and, in some cases, haptic feedback.
Abstract:
A key mechanism for an electronic device includes a switch housing and a hinged structure. As one example, the hinged structure can be a butterfly hinge. The switch housing includes switch pin retaining mechanisms on opposing sides of the switch housing. The hinged structure includes two separate wings that are positioned adjacent to each other such that a cavity is formed between the two wings. The two wings are coupled together by coupling elements. The wings of the hinged structure can include switch housing pins on each arm of the wing that extend into the cavity and couple to the switch pin retaining mechanisms in the switch housing. Various configurations of switch pin retaining mechanisms and switch housing pins can be used to attach the hinged structure to the switch housing.
Abstract:
An illuminated glass keycap having a glyph diffuser layer that may diffuse light through a glyph window opened in a background layer. The background layer may be opaque and the glyph window may be transparent. The keycap is adhered to a scissor mechanism positioned above electrical switch circuitry. Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the keycap, around the perimeter of the keycap, and/or through the background layer.
Abstract:
A venting system for a keyboard assembly is disclosed. A keyboard assembly including a printed circuit board defining a set of apertures, and a group of switch housings coupled to the printed circuit board. Each switch housing of the group of switch housings may define a switch opening positioned above one of the set of apertures of the printed circuit board. The keyboard assembly may also include a shield defining at least one channel of a venting system formed below the printed circuit board. The at least one channel may be in fluid communication with at least one aperture, and at least one of the switch openings positioned above the at least one aperture.
Abstract:
A portable electronic device having several features is disclosed. The device can include a retention member that retains flexible circuits extending from a top portion to a bottom portion of the device, thereby allowing some components to be moved from a top portion of the device to a bottom portion. The device may include a cover plate can be secured with a display in the top portion to cover the retention member and other internal components. The device can include an omni-directional port designed to receive a connector different orientations and provide power to the device. The device can include a flexible keyboard having butterfly keycaps. The device can include an array of openings for an audio driver, with some of the array including through holes and blind holes. The device can also include a touch pad having a force feedback sensor and a haptic device.
Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.
Abstract:
A dome switch utilized in a keyboard assembly is disclosed. The keyboard assembly may include a printed circuit board having a first electrical connector formed in the printed circuit board, and a second electrical connector formed in the printed circuit board adjacent the first electrical connector. The keyboard assembly may also include an inner contact component contacting the second electrical connector of the printed circuit board. The inner contact component may be in electrical communication with the second electrical connector of the printed circuit board. Additionally, the keyboard assembly can include a dome switch surrounding the inner contact component. The dome switch may contact and may be in electrical communication with the first electrical connector of the printed circuit board.
Abstract:
Described is an illumination structure for a key of a keyboard. The illumination structure is used to uniformly illuminate the key and any glyphs that are present on the key. The illumination structure includes a light guide having various features that increase total internal reflection and also illuminate the glyphs of the key.
Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.