Abstract:
An accessory can communicate wirelessly with a host device such as a portable electronic device. Existing accessory protocols developed for wired communication can be used without modification, and a wireless network connecting the two devices can provide a transport or channel connecting the two devices. Establishing a wireless channel can involve the active participation of both devices. For instance, the host device can create and identify virtual port to be used by the accessory, after which the accessory can initiate communication on that virtual port. A host device can be configured to automatically connect to certain accessories upon detection of that accessory on a wireless network under various specific conditions. Encryption of accessory-protocol communications between an accessory and a host device is also provided.
Abstract:
A host device can manage a controllable power adapter accessory using a communication protocol. Based on information provided by the controllable power adapter accessory as to its power capabilities and the power needs and preferences of the host device, the host device can determine a desired power profile and request power from the accessory conforming to the desired profile. The desired power profile can also depend in part on the power-carrying capability of one or more cables connected between the host device and the accessory. In some instances, the host device and controllable power adapter accessory can be connected via an intermediary accessory that can siphon power from the controllable power adapter accessory, and the host device can manage the power siphoning behavior of the intermediary accessory using the communication protocol.
Abstract:
An adapter can be used to connect a portable electronic device to an accessory in instances where the portable electronic device and the accessory have incompatible connectors. The adapter provides two connectors, one compatible with the portable electronic device and the other compatible with the accessory. The adapter has several modes of operation. The portable electronic device selects the appropriate mode of operation for the adapter once it receives information about the accessory connected to the adapter. The portable electronic device instructs the adapter to switch to the selected mode and in response the adapter configures its internal circuitry to enable the selected mode. The portable electronic device can then communicate with the accessory via the adapter. The presence of the adapter can be transparent to the accessory.
Abstract:
An accessory having an RF tuner for digital radio, such as HD radio, can be in communication with a media player such as a portable media device (“PMD”). The user can be given the ability to command the accessory to provide raw digital data, the ability to scan only for stations having digital audio content (or for all available stations), the ability to provide station lists of stations having digital audio content (or all available stations), and the ability to request and store metadata beyond that for stations actually being listened to provide enhanced search capabilities. Enhanced metadata and searching can provide the listener the ability to refine station choices without having to listen at length to any particular station, and further can facilitate tagging broadcast tracks for subsequent access and/or purchase.
Abstract:
An accessory can communicate wirelessly with a host device such as a portable electronic device. Existing accessory protocols developed for wired communication can be used without modification, and a wireless network connecting the two devices can provide a transport or channel connecting the two devices. Establishing a wireless channel can involve the active participation of both devices. For instance, the host device can create and identify virtual port to be used by the accessory, after which the accessory can initiate communication on that virtual port. A host device can be configured to automatically connect to certain accessories upon detection of that accessory on a wireless network under various specific conditions. Encryption of accessory-protocol communications between an accessory and a host device is also provided.
Abstract:
Duplex audio is provided for a mobile communication device and an accessory. In some embodiments, the accessory can selectably operate in a duplex audio mode, concurrently sending audio to and receiving audio from the mobile communication device, or in another audio mode. In duplex audio mode, the accessory can enable its internal audio processing operations (e.g., echo cancellation) while the mobile communication device disables its corresponding internal operations or vice versa. The mobile communication device can control when the accessory transitions into and/or out of duplex audio mode.
Abstract:
A holistic identification process can facilitate reliable interoperation between accessories and host devices, particularly where the accessory includes multiple components and/or multiple communication interfaces. During an identification process, the accessory can provide information about every communication interface it is capable of using to communicate with the host as well as information about various components that the accessory has available for use in interacting with the host device. During subsequent interoperation, the host device can use the identification information to determine a response to an input received from the accessory and/or to determine an interface to use to deliver information to the accessory.
Abstract:
A message-based identification process can facilitate reliable interoperation between accessories and host devices. During an identification process, the devices can negotiate an operating agreement that specifies particular communications (e.g., messages) that each device is permitted to send to or receive from the other, for example by having one device send a list of specific messages that it intends to send to and/or receive from the other. The other device can review the proposal and either accept or reject it. If a proposal is accepted, the devices can begin interoperating using messages that were included in the agreed-upon proposal while ignoring any received messages that were not included in the agreed-upon proposal.
Abstract:
A message-based identification process can facilitate reliable interoperation between accessories and host devices. During an identification process, the devices can negotiate an operating agreement that specifies particular communications (e.g., messages) that each device is permitted to send to or receive from the other, for example by having one device send a list of specific messages that it intends to send to and/or receive from the other. The other device can review the proposal and either accept or reject it. If a proposal is accepted, the devices can begin interoperating using messages that were included in the agreed-upon proposal while ignoring any received messages that were not included in the agreed-upon proposal.
Abstract:
An accessory having an RF tuner for digital radio, such as HD radio, can be in communication with a media player such as a portable media device (“PMD”). The user can be given the ability to command the accessory to provide raw digital data, the ability to scan only for stations having digital audio content (or for all available stations), the ability to provide station lists of stations having digital audio content (or all available stations), and the ability to request and store metadata beyond that for stations actually being listened to provide enhanced search capabilities. Enhanced metadata and searching can provide the listener the ability to refine station choices without having to listen at length to any particular station, and further can facilitate tagging broadcast tracks for subsequent access and/or purchase.