Abstract:
A user equipment (UE) is configured to receive configuration information comprising multiple configuration sets, receive a paging message from a base station, the paging message configured to initiate a mobile terminating connection between the UE and the base station, identify a first configuration set assigned to the UE from the multiple configuration sets based on the paging message and exchange data with a network using the first configuration set, wherein exchanging data with network comprises at least one of receiving downlink data and transmitting uplink data.
Abstract:
The disclosure describes procedures for allocating network resources for a mobile device communicating within a Long Term Evolution (LTE) network. The mobile device can be configured to decode a physical downlink shared channel (PDSCH), acquire first and second physical downlink control channel (PDCCH) decode indicators from a payload of the same PDSCH communication, decode a PDCCH for downlink control information (DCI) associated with a first application data type based on the first PDCCH decode indicator a second application data type based on the second PDCCH decode indicator. The first PDCCH decode indicator can identify an upcoming LTE subframe where the mobile device is required to decode the PDCCH for DCI associated VoLTE resource assignments and the second PDCCH decode indicator can identify an upcoming LTE subframe where the mobile device is required to decode the PDCCH for DCI associated with high bandwidth best effort (BE) data resource assignments.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
A user equipment (UE) configured to receive multiple scheduling request (SR) configurations, wherein each SR configuration is specific to an application, service, quality of service (QoS) flow or set of traffic characteristics, transmit a first type of SR, wherein a plurality of different types of SRs comprising at least the first type of SR and a second type of SR each correspond to a different one of the multiple SR configurations and receive an initial uplink grant for a data transmission in response to the first type of SR, wherein the initial uplink grant indicates one or more uplink resources assigned to the UE by a network based on an application, service, quality of service (QoS) flow or set of traffic characteristics specific to the first type of SR.
Abstract:
A user equipment (UE) is configured to receive a system information block (SIB) from a base station, wherein a dedicated set of physical random access channel (PRACH) resources for redcap devices are explicitly configured in the SIB and transmit, in response to the SIB, an indication to the base station that the UE is a reduced capability (redcap) device.
Abstract:
Apparatus and methods for time division based communication between a wireless device and a wireless network in a licensed radio frequency (RF) band and an unlicensed RF band are disclosed. The wireless device receives downlink control information (DCI), via a primary component carrier (PCC) of a primary cell (Pcell) in the licensed RF band, indicating downlink (DL) data transmission via a secondary component carrier (SCC) of a secondary cell (Scell) in the unlicensed RF band. The wireless device receives via the SCC part of the DL data transmission and transmits a control message via the PCC in response. The wireless device sends a scheduling request (SR) to the eNodeB and receives uplink (UL) transmission opportunities in a combination of the licensed RF band and the unlicensed RF band. The wireless device performs a clear channel assessment before reserving and transmitting to the eNodeB in the unlicensed RF band.
Abstract:
A method for making a cell transition decision based on cell loading is provided. The method can include a wireless communication device receiving a message sent by a base station associated with a serving cell for the wireless communication device. The message can include loading information indicative of a loading factor for each of at least one neighbor cell. The method can further include the wireless communication device reading at least a portion of the loading information from the message; and selecting a target cell for transition from the at least one neighbor cell based on the read loading information.
Abstract:
A wireless device comprises a primary antenna, a primary transceiver, one or more secondary antennas and one or more receive diversity chains. The receive diversity chains, in some embodiments, include transceiver capability. The wireless device measures and collects various statistics. Based on the statistics, the wireless device enables or disables one or more of the receive diversity chains with respect to a cellular radio access technology (RAT). A disabled receive diversity chain, in some instances is then powered down. During an interval when a receive diversity chain is disabled, the control logic periodically or on an event-driven basis enables a given receive diversity chain to probe channel quality indicator (CQI) and channel rank values. In some embodiments, a time interval for collecting a portion of the statistics, is adapted or backed off in anticipation of use of the receive diversity chain, based on traffic circumstances.
Abstract:
Methods that are performed by a user equipment (UE) and corresponding methods of base stations that allow a UE to determine whether the UE is in a carrier aggregation enabled or disabled state. One exemplary embodiment of a method performed by a UE determines a first artificial value for a first parameter and a second artificial value for a power headroom (PHR) for a secondary component carrier (SCC), the first and second artificial values being substantially low relative to a configuration of the network, generates an artificial report including the first and second artificial values, transmits the artificial report to a primary cell providing a primary component carrier (PCC) and receives an indication that the UE is placed in a carrier aggregation disabled state.
Abstract:
Apparatus and methods for time division based communication between a wireless device and a wireless network in a licensed radio frequency (RF) band and an unlicensed RF band are disclosed. The wireless device receives downlink control information (DCI), via a primary component carrier (PCC) of a primary cell (Pcell) in the licensed RF band, indicating downlink (DL) data transmission via a secondary component carrier (SCC) of a secondary cell (Scell) in the unlicensed RF band. The wireless device receives via the SCC part of the DL data transmission and transmits a control message via the PCC in response. The wireless device sends a scheduling request (SR) to the eNodeB and receives uplink (UL) transmission opportunities in a combination of the licensed RF band and the unlicensed RF band. The wireless device performs a clear channel assessment before reserving and transmitting to the eNodeB in the unlicensed RF band.