Abstract:
An electronic device such as a head-mounted device may have displays. The display may have regions of lower (L) and higher (M, H) resolution to reduce data bandwidth and power consumption for the display while preserving satisfactory image quality. Data lines may be shared by lower and higher resolution portions of a display or different portions of a display with different resolutions may be supplied with different numbers of data lines. Data line length may be varied in transition regions between lower resolution and higher resolution portions of a display to reduce visible discontinuities between the lower and higher resolution portions. The lower and higher resolution portions of the display may be dynamically adjusted using dynamically adjustable gate driver circuitry and dynamically adjustable data line driver circuitry.
Abstract:
A display device may include rows of pixels that displays image data on a display, data lines coupled to the rows of pixels, and a digital-to-analog converter (DAC) that outputs a ramp voltage signal including a data voltage to be depicted on a first pixel of the rows of pixels. The display device may also include a capacitor that receives the ramp voltage signal via the DAC and a circuit that sends a control signal to a circuit component that causes the DAC to couple to the capacitor via one of the data lines for a duration of time that comprises a first time when the ramp voltage signal is below the data voltage and a second time when the ramp voltage signal is approximately equal to the data voltage. The capacitor is coupled to the DAC when the ramp voltage signal is greater than zero.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
A display device may include pixels and source lines that provide data line signals to the pixels. The display device may also include gate lines that provide gate signals to switches associated with the pixels. The display device may also include vertical gate lines disposed generally parallel to the source lines and coupled to the gate lines at cross point nodes. The display device may also include compensation lines, such that each compensation line is proximate to a respective vertical gate line. The compensation lines may transmit compensation signals having an opposite polarity as compared to respective gate signals to reduce or eliminate a kickback voltage on at least one of the plurality of pixels.
Abstract:
A display device may include rows of pixels that displays image data on a display, data lines coupled to the rows of pixels, and a digital-to-analog converter (DAC) that outputs a ramp voltage signal including a data voltage to be depicted on a first pixel of the rows of pixels. The display device may also include a capacitor that receives the ramp voltage signal via the DAC and a circuit that sends a control signal to a circuit component that causes the DAC to couple to the capacitor via one of the data lines for a duration of time that comprises a first time when the ramp voltage signal is below the data voltage and a second time when the ramp voltage signal is approximately equal to the data voltage. The capacitor is coupled to the DAC when the ramp voltage signal is greater than zero.
Abstract:
A display device may include pixels and source lines that provide data line signals to the pixels. The display device may also include gate lines that provide gate signals to switches associated with the pixels. The display device may also include vertical gate lines disposed generally parallel to the source lines and coupled to the gate lines at cross point nodes. The display device may also include compensation lines, such that each compensation line is proximate to a respective vertical gate line. The compensation lines may transmit compensation signals having an opposite polarity as compared to respective gate signals to reduce or eliminate a kickback voltage on at least one of the plurality of pixels.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
Abstract:
This application relates to systems, methods, and apparatus for optimizing the operations of a power converter of a display panel based on image data to be output by the display panel. The power converter can include one or more switches that can be activated or deactivated based on the image data in order to shift a power efficiency of the power converter. Power efficiency is shifted as a result of balancing an amount of charge necessary for a load with an amount of resistance created when activating switches of the power converter. Therefore, by dynamically altering a configuration of a power converter based on image data, power efficiency of the power converter can be improved.
Abstract:
An electronic device such as a head-mounted device may have displays. The display may have regions of lower and higher resolution to reduce data bandwidth and power consumption for the display while preserving satisfactory image quality. Data lines may be shared by lower and higher resolution portions of a display or different portions of a display with different resolutions may be supplied with different numbers of data lines. Data line length may be varied in transition regions between lower resolution and higher resolution portions of a display to reduce visible discontinuities between the lower and higher resolution portions. The lower and higher resolution portions of the display may be dynamically adjusted using dynamically adjustable gate driver circuitry and dynamically adjustable data line driver circuitry.
Abstract:
An electronic device such as a head-mounted device may have displays. The display may have regions of lower and higher resolution to reduce data bandwidth and power consumption for the display while preserving satisfactory image quality. Data lines may be shared by lower and higher resolution portions of a display or different portions of a display with different resolutions may be supplied with different numbers of data lines. Data line length may be varied in transition regions between lower resolution and higher resolution portions of a display to reduce visible discontinuities between the lower and higher resolution portions. The lower and higher resolution portions of the display may be dynamically adjusted using dynamically adjustable gate driver circuitry and dynamically adjustable data line driver circuitry.