Abstract:
An embodiment of a surface-emitting laser structure includes a first semiconductor region of a first conductivity type coupled to a first contact and a second semiconductor region of the same conductivity type coupled to a second contact. A third semiconductor region of the opposite conductivity type is coupled to a third contact and interposed between the first and second semiconductor regions. An active region is interposed between the first and third regions. In a further embodiment, the laser structure may include a variable refractive index structure interposed between the second and third semiconductor regions. In another embodiment, a surface-emitting laser structure may include an active region between a first semiconductor region of a first conductivity type coupled to a first contact, and a second semiconductor region of opposite conductivity type coupled to a second contact. A third electrical contact is dielectrically spaced from the second semiconductor region.
Abstract:
A multiple reflectivity band reflector (MRBR) includes a stack of dielectric layers, arranged so that the reflector has a reflectivity profile comprising a plurality of reflectivity bands, e.g. at least first and second wavelength bands with reflectivity above a lasing threshold reflectivity, separated by a third wavelength band between the first and second wavelength bands having reflectivity below the lasing threshold reflectivity. A laser having at least a first mirror and an MRBR as the second mirror has a laser cavity, at least a portion of which is defined by the first mirror and the MRBR. An active region located within the laser cavity contains a material that is capable of stimulated emission at one or more wavelengths in the first and second wavelength bands. The gain spectrum of the laser is adjusted to select one of the first and second wavelength bands, thereby providing for lasing at a wavelength within the selected wavelength band. The laser may be, e.g., a monolithic VCSEL or a one-section or two-section external-cavity VECSEL having the MRBR as one of its cavity mirrors.
Abstract:
A planar lightwave circuit (PLC) module for conditioning light output from a tunable laser designed to generate light at a target wavelength. The PLC module has a substrate; a primary waveguide embedded in said substrate, said primary waveguide having an input end for receiving light from the tunable laser and an output end for outputting said light; and at least a first secondary waveguide embedded in said substrate, said first secondary waveguide receiving a first portion of said light from the tunable laser. A filter having a passband centered on the target wavelength is coupled to an output of the first secondary waveguide to receive said first portion of light, and generates a signal related to the intensity of said first portion of light in the passband centered on the target wavelength. This may be used by a processor and associated laser control circuitry for wavelength locking purposes.
Abstract:
A laser apparatus has a first mirror, a second mirror, at least a portion of which is defined by the first and second mirrors. The laser has an active region located in the laser cavity, which is capable of stimulated emission at one or more wavelengths of light. The second mirror comprises a plurality of dielectric layers arranged in parallel and having a reflectivity band with a peak reflectivity at a peak wavelength, said reflectivity band having a width of less than 1 nm at a reflectivity of 3% less than the peak reflectivity. The laser apparatus may be a tunable laser apparatus in which the peak wavelength of the reflectivity band is adjusted, thereby adjusting the lasing wavelength of the laser. The reflectivity band may be a lasing threshold reflectivity band over which the reflectivity of the second mirror is greater than a lasing threshold reflectivity which is sufficient to permit lasing.
Abstract:
A zigzag waveguide device-based apparatus and method for achieving or maintaining wavelength lock for a tunable laser designed to generate light at a selected one of a plurality of target wavelengths. The apparatus has a reflectively coupled zigzag waveguide device for receiving a portion of light output by the tunable laser, the zigzag waveguide device having a plurality of filters, each having a passband centered at a respective one of the plurality of target wavelengths, whereby said zigzag waveguide device produces a plurality of filtered light outputs. A plurality of photosensors is provided, one for each of said plurality of filters, each said filter positioned to receive a respective one of the plurality of filtered light outputs, each said filter producing a filter output signal related to the intensity of said portion of light in the passband of the corresponding filter. A processor generates, in response to the plurality of filter output signals, a control signal to adjust the lasing wavelength of the tunable laser to achieve or maintain said selected one of the target wavelengths. In one embodiment, the zigzag waveguide device includes a first waveguide that is coupled to the laser to receive light output. A first wavelength filter is coupled to the first waveguide to receive light therefrom. The first wavelength filter transmits a band of wavelengths and reflecting one or more bands of wavelengths. A second waveguide is coupled to the first wavelength filter and receives light reflected from the first wavelength filter. A mirror is coupled to the second waveguide and receives light from the second waveguide. A third waveguide is coupled to the mirror to receive light reflected from the mirror. A second wavelength filter is coupled to the third waveguide to receive light therefrom. The second wavelength filter transmits a band of wavelengths different from the band of wavelengths transmitted by the first wavelength filter and reflects one or more bands of wavelengths. A first photodiode is coupled to receive light transmitted by the first wavelength filter. A second photodiode is coupled to receive light transmitted by the second wavelength filter. A laser wavelength controller is coupled to the tunable laser and is capable of modifying the wavelength of the tunable laser based at least in part on an output of one of the first and second photodiodes.
Abstract:
A monitored laser system includes a laser with a first mirror and an exit mirror. The laser also has a laser cavity defined at least in part by the first mirror and the exit mirror. Within the laser cavity is an active region that contains material that is capable of stimulated emission at one or more wavelengths such that laser light is emitted from the laser. A power source is coupled to the active region. A multiple reflectivity band reflector (MRBR) is coupled to at least a portion of the emitted laser light. The MRBR has at least first and second wavelength bands with reflectivity above a particular reflectivity separated by at least a third wavelength band having reflectivity below the particular reflectivity. A first photodiode is coupled to at least a portion of the filtered laser light and produces an output based on the amount and wavelength of light received. A means for adjusting the emitted wavelength of the laser toward a particular wavelength in one of the at least first, second, and third wavelength bands based at least in part on the output of the first photodiode.
Abstract:
A multiple reflectivity band reflector (MRBR) includes a stack of dielectric layers, arranged so that the reflector has a reflectivity profile comprising a plurality of reflectivity bands, e.g. at least first and second wavelength bands with reflectivity above a lasing threshold reflectivity, separated by a third wavelength band between the first and second wavelength bands having reflectivity below the lasing threshold reflectivity. A laser having at least a first mirror and an MRBR as the second mirror has a laser cavity, at least a portion of which is defined by the first mirror and the MRBR. An active region located within the laser cavity contains a material that is capable of stimulated emission at one or more wavelengths in the first and second wavelength bands. The gain spectrum of the laser is adjusted to select one of the first and second wavelength bands, thereby providing for lasing at a wavelength within the selected wavelength band. The laser may be, e.g., a monolithic VCSEL or a one-section or two-section external-cavity VECSEL having the MRBR as one of its cavity mirrors.
Abstract:
A monitored laser system has a laser having a first mirror; an exit mirror, at least a portion of a laser cavity defined by the first mirror and the exit mirror; and an active region located in the laser cavity, the active region containing a material that is capable of stimulated emission at one or more wavelengths of laser light within a tuning range of the laser. A multiple reflectivity band reflector (MRBR) is coupled to at least a portion of laser light emitted from the laser and transmits filtered laser light. The MRBR has a plurality of layers of material arranged in parallel such that the reflector has a plurality of reflectivity peaks within the tuning range, each reflectivity peak separated from neighboring reflectivity peak by a reflectivity trough having a trough minimum, said reflectivity peaks characterized by a peak profile and said trough minima between said reflectivity peaks characterized by a trough profile. At least one of the peak and trough profiles has a substantially non-constant relationship of wavelength to reflectivity. A first photodiode coupled to at least a portion of the filtered laser light produces an output based on the amount of light received. The emitted wavelength of the laser is adjusted toward a desired wavelength within the tuning range based at least in part on the output of the first photodiode.