Abstract:
A battery cell monitoring system comprises a flexible substrate able to conform to a surface of a battery cell to be monitored, and a plurality of first-level prediction units integrated onto the flexible substrate, where each first-level prediction unit is positioned at a different location on the flexible substrate to each other first-level prediction unit. Each first-level prediction unit comprises at least one sensor to generate sensor signals indicative of a physical state of the battery cell, and first-level prediction circuitry to generate a predicted battery cell status value in dependence on the sensor signals received from the at least one sensor of that first-level prediction unit. Second-level prediction circuitry is arranged to determine a prediction result in dependence on the predicted battery cell status values generated by the first-level prediction circuitry of each first-level prediction unit, and a communications device is used to output the prediction result at least when the prediction result indicates an occurrence of a critical event.
Abstract:
Apparatus comprises at least one visual indicator element; at least one detector to detect access to the apparatus consistent with a cleaning operation being applied to a surface of the apparatus; and processing circuitry to control a visual indication state of the at least one visual indicator element in response to a detection by the detector of access to the surface of the apparatus.
Abstract:
An interface device for a data processing system is provided. The interface device comprises first interface circuitry to receive incoming data and second interface circuitry to transmit processed data to a data store for storage. The interface device is provided with processing circuitry to generate the processed data from the incoming data wherein the processing carried out reduces the data in size. The processing circuitry is also responsive to at least one characteristic of the incoming data or the processed data to transmit a notification signal to a data processing component of the data processing system.
Abstract:
An integrated circuit has voltage generating circuitry for generating an on-chip voltage from a supply voltage in response to clock pulses. Clock control circuitry controls transmission of the clock pulses to the voltage generating circuitry. The clock control circuitry receives a reference voltage and a digital offset value comprising a binary numeric value identifying an offset. The clock control circuitry suppresses transmission of the clock pulses if the on-chip voltage is greater than the sum of the reference voltage and the offset identified by the digital offset value, to reduce power consumption. The offset can be tuned digitally to vary the average level of the on-chip voltage. A similar digital tuning mechanism may be used in a clocked comparator to compare a first voltage with a digitally tunable threshold voltage.
Abstract:
Aspects of the present disclosure relate to an apparatus comprising: a substrate; communication circuitry deposited on said substrate; and ballot circuitry deposited on said substrate. The ballot circuitry comprises: a plurality of voting circuitry elements, each voting circuitry element being responsive to a voting operation to change a conductive state of that voting circuitry element; and logic circuitry communicatively coupled with each of the plurality of voting circuitry elements and with the communication circuitry. The logic circuitry is configured to: detect the conductive state of each of the plurality of voting circuitry elements; and transmit, via the communication circuitry and based on the conductive state of each of the plurality of voting circuitry elements, a voting result.
Abstract:
A computer implemented method and a computer program for generating a layout of a circuit block of an integrated circuit are provided. Input data is received identifying a plurality of circuit elements and interconnections required to implement the circuit block, and the method also has access to a cell library providing a plurality of standard cells, where each standard cell defines a corresponding circuit element using transistors, the transistors comprising n-type transistors and p-type transistors. A plurality of rows are formed within which to place standard cells from the cell library in order to implement the circuit block, the plurality of rows including at least one body biased row in which a body bias is to be applied in respect of either the n-type transistors or the p-type transistors provided by the standard cells placed in that body biased row. Constraint data is specified identifying a subset of the standard cells that are allowed to be placed in each body biased row, and the layout is then generated by placing standard cells within the plurality of rows having regard to the input data, an indication of each body biased row, and the constraint data for each body biased row. This enables a significant improvement in the benefits that can be achieved through the use of body biasing mechanisms, for example allowing a significant increase in switching speed of the circuit block to be achieved, without a significant increase in leakage current.
Abstract:
An integrated circuit 6 including a first voltage domain 4 incorporates real time clock circuitry 12 that communicates via communication circuitry 18 with processing circuitry 16 contained within a second voltage domain. The communication circuitry 18 includes first parallel-to-serial conversion circuitry 24 located within the first voltage domain 4, level shifting circuitry 32 for passing serial signals between the voltage domains and second parallel-to-serial circuitry 26 located in the second voltage domain.
Abstract:
Battery cell monitoring systems comprising a flexible substrate and components integrated onto the flexible substrate, and methods of operating the same are disclosed. The components comprise a computing device and at least one sensor, where the at least one sensor is configured to generate sensor signals indicative of a physical state of the battery cell. The computing device is configured to hold characteristic data values which have been generated based on prior sensor signals. The computing device is configured to receive the sensor signals from the at least one sensor and to generate battery cell status data in dependence on the sensor signals and the characteristic data values.
Abstract:
An integrated circuit device including processing circuitry, communications circuitry configured to provide a communication link with a communication apparatus external to the integrated circuit device, and a memory accessible by the processing circuitry and by the communications circuitry, the memory comprising a memory region to which the processing circuitry has write access and to which the communications circuitry has read access, in which the processing circuitry is configured to write information to the memory region indicative of one or more use conditions of the integrated circuit device, and in which the communications circuitry is configured to access the memory region and to provide the information indicative of the one or more use conditions of the integrated circuit device via the communication link.
Abstract:
A data buffer comprises data storage circuitry; input circuitry to input data to be stored by the data storage circuitry at a first operating voltage; output circuitry to output stored data from the data storage circuitry at a second operating voltage different to the first operating voltage; and control circuitry to control an operating voltage of the data storage circuitry to be substantially the first operating voltage during a data input operation by the input circuitry and to be substantially the second operating voltage during a data output operation by the output circuitry.