Abstract:
A heat-reactive resist material contains copper oxide, and silicon or silicon oxide, and is formed so that the content of silicon or silicon oxide in the heat-reactive resist material is 4.0 mol % or more less than 10.0 mol % in terms of mole of silicon. A heat-reactive resist layer is formed using the heat-reactive resist material, is exposed, and then, is developed with a developing solution. Using the obtained heat-reactive resist layer as a mask, dry etching is performed on a substrate with a fluorocarbon to manufacture a mold having a concavo-convex shape on the substrate surface. At this point, it is possible to control a fine pattern comprised of the concavo-convex shape.
Abstract:
A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 μm, a pattern depth H of the fine pattern ranges from 1 nm to 10 μm, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
Abstract:
In order to provide a copper oxide etchant and an etching method using the same capable of selectively etching exposure/non-exposure portions when laser light exposure is performed by using copper oxide as a thermal-reactive resist material, the copper oxide etchant for selectively etching copper oxides having different oxidation numbers in a copper oxide-containing layer containing the copper oxide as a main component contains at least a chelating agent or salts thereof.
Abstract:
A seamless mold manufacturing method of the invention is a seamless mold manufacturing method having the steps of forming a thermal reaction type resist layer on a sleeve-shaped mold, and exposing using a laser and developing the thermal reaction type resist layer and thereby forming a fine mold pattern, and is characterized in that the thermal reaction type resist layer is comprised of a thermal reaction type resist having a property of reacting in predetermined light intensity or more in a light intensity distribution in a spot diameter of the laser.
Abstract:
A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 μm, a pattern depth H of the fine pattern ranges from 1 nm to 10 μm, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.