Abstract:
Disclosed is a laminated separator including a first polyolefin microporous layer and a second polyolefin microporous layer which is laminated on the first polyolefin microporous layer and which is different from the first polyolefin microporous layer, wherein at least one of the first microporous layer and the second microporous layer includes an inorganic particle having a primary particle size of 1 nm or more and 80 nm or less.
Abstract:
An object is to provide a separator excellent in adhesiveness to electrodes and a separator for an electricity storage device also excellent in handling performance. A separator for an electricity storage device having a polyolefin microporous film and a thermoplastic polymer coating layer covering at least a part of at least one of surfaces of the polyolefin microporous film, in which the thermoplastic polymer coating layer, on the polyolefin microporous film, has a portion containing a thermoplastic polymer and a portion not containing the thermoplastic polymer in a sea-island configuration, the thermoplastic polymer coating layer contains the thermoplastic polymer having at least two glass-transition temperatures, at least one of the glass-transition temperatures is in a range of less than 20° C. and at least one of the glass-transition temperatures is in a range of 20° C. or more.
Abstract:
A heat-reactive resist material contains copper oxide, and silicon or silicon oxide, and is formed so that the content of silicon or silicon oxide in the heat-reactive resist material is 4.0 mol % or more less than 10.0 mol % in terms of mole of silicon. A heat-reactive resist layer is formed using the heat-reactive resist material, is exposed, and then, is developed with a developing solution. Using the obtained heat-reactive resist layer as a mask, dry etching is performed on a substrate with a fluorocarbon to manufacture a mold having a concavo-convex shape on the substrate surface. At this point, it is possible to control a fine pattern comprised of the concavo-convex shape.
Abstract:
To provide a resin mold which is excellent in adhesion to a substrate, excellent in release properties from a transfer material resin, further excellent in durability of the resin mold itself, and which endures repetition transfer to the transfer material resin, a resin mold of the invention is a resin mold having a fine concavo-convex structure on the surface, and is characterized in that the fluorine element concentration (Es) in a resin mold surface portion is the average fluorine element concentration (Eb) in the resin forming the resin mold or more.
Abstract:
Disclosed is a laminated polyolefin microporous membrane having a two-type three-layer structure in which first polyolefin microporous layers are surface layers and a second polyolefin microporous layer is an intermediate layer which is different from the first polyolefin microporous layer, in which at least one of the first polyolefin microporous layers and the second polyolefin microporous layer comprises a polypropylene-based resin in which a mass ratio of polypropylene to propylene copolymer is 0 or more and 2.29 or less, and a melting point of the polypropylene copolymer is 120° C. or higher and 145° C. or lower. Also disclosed is a method of making the same.
Abstract:
The disclosure provides a laminated polyolefin microporous membrane having propylene-α-olefin copolymer and methods of producing the same. The laminated polyolefin microporous membrane has a two-type three layer structure in which first polyolefin microporous layers are surface layers and a second polyolefin microporous layer is an intermediate layer which is different from the first polyolefin microporous layer.
Abstract:
A semiconductor light emitting apparatus comprised of a semiconductor light emitting device (100) having a layered semiconductor layer (110) configured by layering at least two or more semiconductor layers (103), (105) and a light emitting layer (104) to emit first light, and a wavelength conversion member that covers at least apart of the semiconductor light emitting device (100), absorbs at least a part of the first light and that emits second light with a wavelength different from that of the first light, characterized in that the semiconductor light emitting device (100) is provided with a fine structure layer, as a component, including dots comprised of a plurality of convex portions or concave portions extending in the out-of-plane direction on one of main surfaces forming the semiconductor light emitting device (100), the fine structure layer forms a two-dimensional photonic crystal (102) controlled by at least one of a pitch among the dots, a dot diameter and a dot height, and that the two-dimensional photonic crystal (102) has at least two or more periods each of 1 μm or more.
Abstract:
A multilayer porous membrane comprising a porous membrane containing a polyolefin resin as a main component; and a porous layer containing an inorganic filler and a resin binder and laminated on at least one surface of the porous membrane; wherein the porous membrane has an average pore size d=0.035 to 0.060 μm, a tortuosity τa=1.1 to 1.7, and the number B of pores=100 to 500 pores/μm2, which are calculated by a gas-liquid method, and the porous membrane has a membrane thickness L=5 to 22 μm.
Abstract:
A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 μm, a pattern depth H of the fine pattern ranges from 1 nm to 10 μm, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
Abstract:
A pattern wafer (10) for LEDs is provided with an uneven structure A (20) having an arrangement with n-fold symmetry substantially on at least a part of the main surface, where in at least a part of the uneven structure A (20), a rotation shift angle Θ meets 0°