Abstract:
Structures including a tensile-stressed silicon arsenic layer, devices including the structures, and methods of forming the devices and structures are disclosed. Exemplary tensile-stressed silicon arsenic layer have an arsenic doping level of greater than 5 E+20 arsenic atoms per cubic centimeter. The structures can be used to form metal oxide semiconductor devices.
Abstract:
A method of forming a semiconductor material incorporating an electrical dopant is disclosed. In one aspect, a method of incorporating dopant in a semiconductor film comprises forming a first semiconductor material incorporating the dopant at a first dopant concentration and preferentially etching a portion of the first semiconductor material, wherein etching leaves a first etched semiconductor material incorporating the dopant at a second dopant concentration higher than the first dopant concentration.
Abstract:
Structures including a tensile-stressed silicon arsenic layer, devices including the structures, and methods of forming the devices and structures are disclosed. Exemplary tensile-stressed silicon arsenic layer have an arsenic doping level of greater than 5 E+20 arsenic atoms per cubic centimeter. The structures can be used to form metal oxide semiconductor devices.
Abstract:
Structures including a tensile-stressed silicon arsenic layer, devices including the structures, and methods of forming the devices and structures are disclosed. Exemplary tensile-stressed silicon arsenic layer have an arsenic doping level of greater than 5 E+20 arsenic atoms per cubic centimeter. The structures can be used to form metal oxide semiconductor devices.
Abstract:
A method of forming a semiconductor material incorporating an electrical dopant is disclosed. In one aspect, a method of incorporating dopant in a semiconductor film comprises forming a first semiconductor material incorporating the dopant at a first dopant concentration and preferentially etching a portion of the first semiconductor material, wherein etching leaves a first etched semiconductor material incorporating the dopant at a second dopant concentration higher than the first dopant concentration.
Abstract:
Structures including a tensile-stressed silicon arsenic layer, devices including the structures, and methods of forming the devices and structures are disclosed. Exemplary tensile-stressed silicon arsenic layer have an arsenic doping level of greater than 5 E+20 arsenic atoms per cubic centimeter. The structures can be used to form metal oxide semiconductor devices.