Abstract:
A deposition apparatus is provided to eliminate unnecessary empty spaces that may form between a substrate and a substrate supporting pin, which may be formed within a substrate supporting pin hole, by covering the substrate supporting pin, inserted into the substrate supporting pin hole formed in the substrate support, by a substrate supporting pin cover loaded on the substrate support. Accordingly, the temperature under the substrate can be maintained constant, and generation of parasitic plasma or contaminating particles can be avoided.
Abstract:
In a deposition apparatus, as a plurality of plasma connection terminals that transfer plasma power to a plasma electrode are coupled in parallel to the plasma electrode, resistance caused by the plurality of plasma connection terminals is reduced and a current is distributed such that heat generated in the plurality of plasma connection terminals can be distributed. Therefore, even if high RF power is used, by preventing the plurality of plasma connection terminals from being oxidized, plasma is stably supplied and thus, stability of a deposition apparatus and the accuracy of a process can be enhanced.
Abstract:
A deposition apparatus and a method of depositing a thin film using the same are provided. By maintaining pressure of an external chamber between a reaction space and an outer wall slightly lower than pressure of the reaction space by supplying a charge gas to an external chamber of a space between the reaction space and an outer wall, parasitic plasma can be prevented from being generated within the external chamber. When loading or unloading a substrate, a charge gas of the external chamber can be prevented from flowing backward to the reaction space, and by supplying nitrogen gas as a charge gas, even if high plasma power is supplied, parasitic plasma can be effectively prevented from being generated in the external chamber.