Abstract:
The invention provides a vibration isolation system (IS), comprising a piston (402) to carry a payload, a connecting member (410), a spring (404) and a flexible member (408). The spring is arranged to support the piston along a direction with a positive stiffness. The flexible member is arranged to apply a force to the piston along the direction via the connecting member with a negative stiffness.
Abstract:
The invention relates to a vibration isolator, comprising: a base; a coupling element to be coupled to a vibration sensitive object; a decoupling mass; a first vibration isolator part arranged between the base and the decoupling mass; and a second vibration isolator part arranged between the decoupling mass and the coupling element, and wherein at least one of the first and second vibration isolator part comprises a pneumatic isolator.
Abstract:
An apparatus having: a system configured to measure an object; a base structure; an object support constructed to hold the object, the object support movably supported on the base structure; a balance mass configured to absorb a reaction force arising from movement of the object support; an actuator connected to the balance mass and the base structure, the actuator configured to apply a force to the balance mass and the base structure; a sensor configured to produce a signal for a measured characteristic of the base structure corresponding to a disturbance, or its effect, acting on the base structure; and a control system configured to determine, based on at least the signal for the measured characteristic of the base structure, a signal for the actuator to apply a force to the base structure and/or the balance mass.
Abstract:
A lithographic apparatus comprises a base frame constructed to form a supporting structure of the lithographic apparatus, an active base frame support arranged between the base frame and a ground floor. The active base frame support is configured to support the base frame on the ground floor. The active base frame support comprises an actuator configured to exert a force in a horizontal direction between the base frame and the ground plane. The lithographic apparatus further comprises a control device configured to drive the actuator, a signal representative of a disturbance force on the base frame being provided to the control device, the control device being configured to drive the actuator using the force sensor signal.
Abstract:
A lithographic apparatus includes a base frame, an illumination system configured to condition a radiation beam and supported by the base frame, a support constructed to support a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam, a substrate table constructed to hold a substrate, a projection system configured to project the patterned radiation beam onto a target portion of the substrate, a positioning device configured to position the substrate table, the positioning device being supported by the base frame, a sensor configured to sense a vibration caused by a torque exerted on the base frame, and an actuator configured to exert a force on the illumination system or the base frame, in response to the sensed vibration, in order to at least partly dampen the vibration.
Abstract:
The invention relates to a vibration isolator, comprising: a base; a coupling element to be coupled to a vibration sensitive object; a decoupling mass; a first vibration isolator pan arranged between the base and the decoupling mass; and a second vibration isolator part arranged between the decoupling mass and the coupling element, and wherein at least one of the first and second vibration isolator part comprises a pneumatic isolator.
Abstract:
A projection system is provided that includes a sensor system that measures at least one parameter that relates to the physical deformation of a frame that supports the optical elements within the projection system, and a control system that, based on the measurements from the sensor system, determines an expected deviation of the position of the beam of radiation projected by the projection system that is caused by the physical deformation of the frame.
Abstract:
The invention relates to an electronic system for an accelerometer having a piezoelectric element and a first mechanical resonance frequency, comprising: a) a damping circuit configured to: —receive an acceleration signal from the piezoelectric element; —electronically dampen an amplitude of the first mechanical resonance frequency; and—generate a damped acceleration signal, b) an extender configured to: —receive the damped acceleration signal; —extend the frequency response; and—output an extended damped acceleration signal, wherein the extender is configured to have a first electronic anti-resonance frequency matching the damped first mechanical resonance frequency, and to have a frequency response between the first electronic anti-resonance frequency and a higher second frequency that is substantially opposite to a corresponding frequency response of the combination of the accelerometer and the damping circuit.
Abstract:
A lithographic apparatus or frame assembly, comprising: a first and second pneumatic support, being arranged to control position of a frame, each of said pneumatic supports accommodating a pressure chamber; a frame position control system, comprising; a first position sensor device, configured to generate measurement data relating to the position of the frame; a first pressure controller, configured to control the pressure in the pressure chamber of the first pneumatic support on the basis of the measurement data generated by the first position sensor device; a pressure differential sensor device, configured to generate data relating to the difference between the pressure in the pressure chambers of the first and the second pneumatic support; a second pressure controller, configured to control the pressure in the pressure chamber of the second pneumatic support on the basis of the measurement data from the pressure differential sensor device.
Abstract:
The invention provides a pneumatic support device for a lithographic apparatus and a lithographic apparatus with such support device. The support device comprises a gas spring. The gas spring comprises a suspending part, a suspended part, and a pressure chamber configured for supporting the suspended part relative to the suspending part. The support device further comprises an actuator configured for positioning the suspended part relative to the suspending part, an acceleration sensor configured for generating a first sensor signal representative for the acceleration of the suspending part, a pressure sensor configured for generating a second sensor signal representative for the pressure in the pressure chamber, and a control unit. The control unit is configured to: receive the first sensor signal, receive the second sensor signal, filter the first sensor signal in a low-pass filter, filter the second sensor signal in a high-pass filter, determine, based on the filtered first sensor signal and filtered second sensor signal, a force exerted by the suspending part on the suspended part, and generate, based on said force, a control signal for the actuator.