Abstract:
A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
Abstract:
There is disclosed a method of measuring a process parameter for a manufacturing process involving lithography. In a disclosed arrangement the method comprises performing first and second measurements of overlay error in a region on a substrate, and obtaining a measure of the process parameter based on the first and second measurements of overlay error. The first measurement of overlay error is designed to be more sensitive to a perturbation in the process parameter than the second measurement of overlay error by a known amount.
Abstract:
A lithographic process is used to form a plurality of target structures (T) on a substrate (W). Each target structure comprises overlaid gratings each having a specific overlay bias. Asymmetry (A) of each grating, measured by scatterometry, includes contributions due to (i) the overlay bias, (ii) an overlay error (OV) in the lithographic process and (iii) bottom grating asymmetry within the overlaid gratings. Asymmetry measurements are obtained for three or more target structures having three or more different values of overlay bias (e.g., −d, 0, +d). Knowing the three different overlay bias values and a theoretical curve relationship between overlay error and asymmetry, overlay error (OV) can be calculated while correcting the effect of bottom grating asymmetry. Bias schemes with three and four different biases are disclosed as examples. Gratings with different directions and biases can be interleaved in a composite target structure.
Abstract:
A substrate has three or more overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values and an assumed non-linear relationship between overlay and target asymmetry, thereby to correct for feature asymmetry. The periodic relationship in the region of zero bias and P/2 has gradients of opposite sign. The calculation allows said gradients to have different magnitudes as well as opposite sign. The calculation also provides information on feature asymmetry and other processing effects. This information is used to improve subsequent performance of the measurement process, and/or the lithographic process.
Abstract:
A method of metrology target design is described. The method includes determining a sensitivity of a parameter for a metrology target design to an optical aberration, determining the parameter for a product design exposed using an optical system of a lithographic apparatus, and determining an impact on the parameter of the metrology target design based on the parameter for the product design and the product of the sensitivity and one or more of the respective aberrations of the optical system.