Abstract:
In a lithographic projection system, the radiation energy delivered to the substrate needs to be accurately controlled. Attenuation by injecting an absorbent gas into a volume through which the radiation passes is a convenient way to control the energy. Additionally, the interaction between gasses and the radiation may be used to measure the energy of the radiation with minimal disruption to the radiation.
Abstract:
A radiation source unit is provided that includes an anode and a cathode that are configured and arranged to create a discharge in a substance in a space between said anode and cathode and to form a plasma so as to generate electromagnetic radiation. The substance may comprise xenon, indium, lithium, tin or any suitable material. To improve conversion efficiency, the source unit may be constructed to have a low inductance, and operated with a minimum of plasma. To, for example, improve heat dissipation, a fluid circulation system can be created within the source volume and a wick by using a fluid in both its vapor and liquid states. To, for example, prevent contamination from entering a lithographic projection apparatus, the source unit can be constructed to minimize the production of contamination, and a trap can be employed to capture the contamination without interfering with the emitted radiation.
Abstract:
A lithographic projection apparatus for EUV lithography includes a foil trap. The foil trap forms an open structure after the EUV source to let the EUV radiation pass unhindered. The foil trap is configured to be rotatable around an optical axis. By rotating the foil trap, an impulse transverse to the direction of propagation of the EUV radiation can be transferred on debris present in the EUV beam. This debris will not pass the foil trap. In this way, the amount of debris on the optical components downstream of the foil trap is reduced.
Abstract:
Contaminant particles travelling with a projection beam in a lithographic projection apparatus are ionized. A purge gas may be attracted towards getter plates provided upstream of the purge gas supply. A magnetic field traps electrons generated by the ionizer to improve the ionization of the purge gas. The contaminant particles can be ionized by generating a plasma in a tube having a greater length than width.
Abstract:
An optical system includes a radiation source and at least one collector located in the vicinity of the radiation source. The collector is arranged to collect the radiation to provide a beam of radiation. The at least one collector includes a first reflector on a concave surface and a second reflector on a convex surface, the convex surface surrounding the concave surface.
Abstract:
In a lithographic projection apparatus, a grating spectral filter is used to filter an EUV projection beam. The grating spectral filter is preferably a blazed, grazing incidence, reflective grating. Cooling channels may be provided in or on the rear of the grating spectral filter. The grating spectral filter may be formed of a material effectively invisible to the desired radiation.
Abstract:
Contaminant particles travelling with a projection beam in a lithographic projection apparatus are ionized. A purge gas may be attracted towards getter plates provided upstream of the purge gas supply. A magnetic field traps electrons generated by the ionizer to improve the ionization of the purge gas. The contaminant particles can be ionized by generating a plasma in a tube having a greater length than width.