摘要:
A high-speed serial data transceiver includes multiple receivers and transmitters for receiving and transmitting multiple analog, serial data signals at multi-gigabit-per-second data rates. Each receiver includes a timing recovery system for tracking a phase and a frequency of the serial data signal associated with the receiver. The timing recovery system includes a phase interpolator responsive to phase control signals and a set of reference signals having different predetermined phases. The phase interpolator derives a sampling signal, having an interpolated phase, to sample the serial data signal. The timing recovery system in each receiver independently phase-aligns and frequency synchronizes the sampling signal to the serial data signal associated with the receiver. A receiver can include multiple paths for sampling a received, serial data signal in accordance with multiple time-staggered sampling signals, each having an interpolated phase.
摘要:
A system and method is provided for phase interpolator based transmission clock control. The system includes a transmitter having a phase interpolator coupled to a master timing generator and a transmission module. The phase interpolator is also coupled to a receiver interpolator control module and/or an external interpolator control module. When the system is operating in repeat mode, the transmitter phase interpolator receives a control signal from a receiver interpolator control module. The transmitter phase interpolator uses the signal to synchronize the transmission clock to the sampling clock. When the system is operating in test mode, a user defines a transmission data profile in an external interpolator control module. The external interpolator control module generates a control signal based on the profile. The transmitter phase interpolator uses the signal to generate a transmission clock that is used by the transmission module to generate a data stream having the desired profile.
摘要:
A transceiver system is disclosed that includes a plurality of transceiver chips. Each transceiver chip includes one or more SERDES cores. Each SERDES core includes one or more SERDES lanes. Each SERDES lane includes a receive channel and a transmit channel. The transmit channel of each SERDES lane is phase-locked with a corresponding receive channel. The transceiver system has the capability of phase-locking a transmit clock signal phase of a transmitting component with a receive clock signal phase of a receiving component that is a part of a different SERDES lane, a different SERDES core, a different substrate, or even a different board. Each SERDES core receives and transmits data to and from external components connected to the SERDES core, such as hard disk drives. A method of transferring data from a first external component coupled to a receive channel to a second external component coupled to a transmit channel is also disclosed.
摘要:
A transceiver system is disclosed that includes a plurality of transceiver chips. Each transceiver chip includes one or more SERDES cores. Each SERDES core includes one or more SERDES lanes. Each SERDES lane includes a receive channel and a transmit channel. The transmit channel of each SERDES lane is phase-locked with a corresponding receive channel. The transceiver system has the capability of phase-locking a transmit clock signal phase of a transmitting component with a receive clock signal phase of a receiving component that is a part of a different SERDES lane, a different SERDES core, a different substrate, or even a different board. Each SERDES core receives and transmits data to and from external components connected to the SERDES core, such as hard disk drives. A method of transferring data from a first external component coupled to a receive channel to a second external component coupled to a transmit channel is also disclosed.
摘要:
In a network having a first node and a second node, a method of verifying a lane routing between the first node and the second node. The first node and the second node operate according to a protocol in which: (1) a character is converted to code groups, (2) each code group has a corresponding lane, and (3) the code groups are communicated across the lanes in a parallel manner. A first set of code groups is transmitted from the first node. Preferably, the first set of code groups is different from a set of code groups predefined by the protocol. A second set of code groups is received at the second node. The second set of code groups corresponds to the first set of code groups. A determination is made whether the second set of code groups matches the first set of code groups. An identity of the first set of code groups can be preprogrammed within the second node. Preferably, the first set of code groups has a different code group in each lane. Optionally, the lane routing between the first node and the second node is corrected if the second set of code groups mismatches the first set of code groups.
摘要:
A system and method for reducing power consumption during periods of low link utilization. A single enhanced core can be defined that enables operation of subset of parent physical layer devices (PHYs). The subset and parent PHYs can have a fundamental relationship that enables synchronous switching between them depending on the link utilization state.
摘要:
Aspects of a system for physical layer aggregation may include one or more switch ICs and/or physical (PHY) layer ICs that enable reception of data packets via a medium access control (MAC) layer protocol entity. Each of the received data packets may be fragmented into a plurality of fragment payloads. Each of the plurality of fragment payloads may be sent to a PHY layer protocol entity instance a physical layer protocol entity instance selected from a plurality of physical layer protocol entity instances.
摘要:
In a network having a first node and a second node, a method of verifying a lane routing between the first node and the second node. The first node and the second node operate according to a protocol in which: (1) a character is converted to code groups, (2) each code group has a corresponding lane, and (3) the code groups are communicated across the lanes in a parallel manner. A first set of code groups is transmitted from the first node. Preferably, the first set of code groups is different from a set of code groups predefined by the protocol. A second set of code groups is received at the second node. The second set of code groups corresponds to the first set of code groups. A determination is made whether the second set of code groups matches the first set of code groups. An identity of the first set of code groups can be preprogrammed within the second node. Preferably, the first set of code groups has a different code group in each lane. Optionally, the lane routing between the first node and the second node is corrected if the second set of code groups mismatches the first set of code groups.
摘要:
Various embodiments are disclosed relating to crosstalk emission management. In an example embodiment, an amplitude of a main tap of a transmit equalizer may be determined to limit crosstalk emitted from a local channel to one or more other channels to be less than a threshold. A ratio of an amplitude of at least one secondary tap of the transmit equalizer to the amplitude of the main tap may be determined to provide equalization to the local channel.
摘要:
Systems and methods of digital interface translation are described. One embodiment of the invention includes multiple receiver lanes, where at least one of the receiver lanes is configured to receive a data channel at a first data rate and encoded in accordance with an input digital interface standard, an auxiliary channel input configured to receive an auxiliary data channel, and a single transmitter lane configured to output a single data channel at a second data rate and encoded in accordance with an output digital interface standard. In addition, the multilane to single lane digital interface translator is configured to decode the received data into data streams, and interleave the data streams to form packets, the multilane to single lane digital interface translator is configured to insert auxiliary data received via the auxiliary channel input and idle data between the packets to produce an output data stream that is rate matched to the second data rate, and the multilane to single lane digital interface translator is configured to encode the output data stream in accordance with the output digital interface standard.