Abstract:
Methods of stabilizing the molecular weight of polymer stents scaffolds after E-beam sterilization are disclosed. The molecular weight of the polymer of the irradiated scaffolds is stabilized through exposure to gas containing oxygen.
Abstract:
Methods of fabricating a polymeric implantable device, such as a stent, with improved fracture toughness through annealing a polymer construct below the glass transition temperature of the polymer of the construct prior to a deformation step are disclosed herein. The deformation of the construct induces crystallization in the polymer construct through strain-induced crystallization. The annealing of the polymer construct accelerates the crystallization induced during the deformation and results in an increase in crystallite density with smaller crystallites as compared to deformation of a tube that has not been annealed. A stent scaffolding is then made from the deformed tube.
Abstract:
Methods are disclosed for chemically stabilizing a polymer stent after sterilization. The stent is exposed to a temperature above ambient for a period of time after radiation sterilization. The exposure reduces the concentration of free radicals generated by the radiation.
Abstract:
A method of accelerated aging of bioresorbable polymer scaffolds including exposing the scaffold to water is disclosed. The scaffold is exposed to water at a controlled temperature for a selected aging time. The functional outputs, such as radial strength, expandability, and % recoil obtained from aged scaffolds predict those of real-time aging of the scaffold. The accelerated aging factor, which is the required shelf life divided by the aging time, is significantly higher for poly(L-lactide) scaffolds tested than thermal aging.
Abstract:
It is provided herein modified polylactide (PLA) polymers comprising biocompatibile functional group(s) on the polymers and methods of making and using the modified PLA polymers.
Abstract:
Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number-average molecular weight of the polymer of the polymeric stent, fall within a narrower range.
Abstract:
Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number-average molecular weight of the polymer of the polymeric stent, fall within a narrower range.
Abstract:
Methods of fabricating a polymeric implantable device, such as a stent, with improved fracture toughness through annealing a polymer construct below the glass transition temperature of the polymer of the construct prior to a deformation step are disclosed herein. The deformation of the construct induces crystallization in the polymer construct through strain-induced crystallization. The annealing of the polymer construct accelerates the crystallization induced during the deformation and results in an increase in crystallite density with smaller crystallites as compared to deformation of a tube that has not been annealed. A stent scaffolding is then made from the deformed tube.
Abstract:
It is provided herein modified polylactide (PLA) polymers comprising biocompatibile functional group(s) on the polymers and methods of making and using the modified PLA polymers.
Abstract:
Methods are disclosed for conditioning a polymeric stent after sterilization, and/or after crimping and before packaging, such that the properties of the polymeric stent fall within a narrower range of values. The stent is exposed to a controlled temperature at or above ambient for a period of time after radiation sterilization and/or after crimping and before sterilization. As a result, the polymeric stent properties, particularly radial strength and number-average molecular weight of the polymer of the polymeric stent, fall within a narrower range.