Abstract:
Displays, display components, image and video processing apparatus and related methods are described. A method for driving local-dimming displays comprises generating control values for driving pixels of a spatial light modulator from one image data component and generating control values for driving backlight elements from a second image data component. The first and second image data components may respectively comprise a tone map and a ratio image. Control values for the spatial light modulator and/or backlight may be obtained using cost effective hardware.
Abstract:
Modulated light sources are described. A modulated light source may have first light sources that are configured to emit first light, which has first color components that occupy a range that is beyond one or more prescribed ranges of light wavelengths. The modulated light source may also have a light converter that is configured to be illuminated by the first light. The light converter converts the first light into second light. The second light has one or more second color components that are within the one or more prescribed ranges of light wavelengths. Strengths of the one or more second color components in the second light are monitored and regulated to produce a particular point within a specific color gamut.
Abstract:
High dynamic range 3D images are generated with relatively narrow dynamic range image sensors. Input frames of different views may be set to different exposure settings. Pixels in the input frames may be normalized to a common range of luminance levels. Disparity between normalized pixels in the input frames may be computed and interpolated. The pixels in the different input frames may be shifted to, or stay in, a common reference frame. The pre-normalized luminance levels of the pixels may be used to create high dynamic range pixels that make up one, two or more output frames of different views. Further, a modulated synopter with electronic mirrors is combined with a stereoscopic camera to capture monoscopic HDR, alternating monoscopic HDR and stereoscopic LDR images, or stereoscopic HDR images.
Abstract:
Display backlight units are controlled with a signal. A message has an address header specifying one of an array of backlight units, and instructions for individually controlling each of the backlight units, particularized accordingly. The message is routed from a controller to a first controllable backlight unit of the display, which controllably responds to its corresponding particularized instructions. The message is sequentially routed in order from each backlight unit to the next in a chained ring configuration. Data from the backlight units is similarly routed back to the controller.
Abstract:
Techniques for operating a display system in a wide range of ambient light conditions are provided. An intensity of ambient light on a display panel may be detected. The display panel may be illuminated by light sources in addition to the ambient light. An individual light source may be individually settable to an individual light output level. If it is determined that the luminance level of the ambient light is above a minimum ambient luminance threshold, an ambient black level may be calculated using the intensity of ambient light. Light output levels of one or more of the light sources may be elevated to first light output levels. Here, the one or more light sources may be designated to illuminate one or more dark portions of an image. The first light output levels may create a new black level equaling the determined ambient black level.
Abstract:
Techniques for extracting light from a light guide are described. In some embodiments, a light source comprises a light guide configured to trap first light through total internal reflection. The light source may further comprise a plurality of light extractors configured to extract at least a portion of the first light upon establishing optical contact with the light guide. The light source is configured to control individual light extractors in the plurality of light extractors to make optical contact with the light guide. Quantum dots may be used with the light source to regenerate light, within desired frequency band, from the at least a portion of the first light.
Abstract:
Displays, display components, image and video processing apparatus and related methods are described. A method for driving local-dimming displays comprises generating control values for driving pixels of a spatial light modulator from one image data component and generating control values for driving backlight elements from a second image data component. The first and second image data components may respectively comprise a tone map and a ratio image. Control values for the spatial light modulator and/or backlight may be obtained using cost effective hardware.
Abstract:
A decoder receives for decoding and post-processing for display an HDR (high dynamic range) image comprising a first coded image (e.g., a JPEG-HDR baseline image) and a second coded image (e.g., a JPEG-HDR ratio image). The first coded image is partially decoded and post-processed according to a post-processing command (e.g., scaling) to output a first decoded and post-processed image. The second coded image is also partially decoded and post-processed according to the post-processing command to output a second decoded and post-processed image. The first and the second decoded and post-processed images are combined to output a decoded HDR image according to the post-processing command.
Abstract:
Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.
Abstract:
Techniques for stereoscopic 3D display systems with active shuttered glasses are provided which overcomes the real-world limitations of sample/load & hold displays, resulting in greater overall brightness, while reducing crosstalk between each eye perspective. In some embodiments, a first left-eye perspective frame and a first right-eye frame are determined from image data. A first composite frame of a first type is then created. This first composite frame of the first type comprises one or more left-eye pixel values from the first left-eye frame and one or more right-eye pixel values from the first right-eye frame. The first composite frame of the first type is outputted to the display area. This may also include use of scanning backlight synchronized to loading/hold of display in conjunction with the composite frame.