摘要:
A high energy density alkaline storage battery which uses a positive electrode including mainly nickel oxide is provided by increasing the capacities of the positive electrode and negative electrode. For increasing the capacity density of the positive electrode, the active material is incorporated as a solid solution with at least one element selected from manganese, chromium, aluminum and calcium in the range of from not less than 3 mol % to not more than 15 mol % relative to the active material, and the surface and/or the neighborhood of the surface of the active material are coated with a cobalt oxyhydroxide having a high electric conductivity of a specific resistance of 15 &OHgr;·cm or less and a low crystallinity.
摘要:
The present invention provides alkaline storage batteries of which high-rate discharge characteristic at low-temperature, cycle life, and storage performance at high-temperature are improved in good balance and the cost performance is superior even when the content of cobalt is made extremely low by using in the negative electrode consisting of hydrogen absorbing alloy powders based on MmNi system alloys comprising MmNi.sub.5 system alloy which remains mostly crystalline in phase when absorbing hydrogen and Mm.sub.2 Ni.sub.7 system alloy which turns mostly amorphous in phase upon absorbing hydrogen.
摘要:
A nickel positive electrode including an active material mixture mainly composed of a nickel oxide and an electrically conductive support, a metal and/or an oxide thereof including elements effective for increasing oxygen overvoltage, preferably at least one element selected from Ca, Ti, Nb, Cr, Y and Yb is contained in a conducting agent such as metallic Co and/or Co oxide added to supplement the electrical conductivity of the active material. By virtue of this construction, the decrease of charging efficiency caused by increase of battery temperature and decrease of the oxygen overvoltage with charging of the battery can be inhibited and the charging efficiency can be improved in a wide temperature atmosphere. Thus, a nickel-metal hydride storage battery of high capacity can be provided.
摘要:
A metal sheet (1) which constitutes a non-sintered type electrode support is processed to have minute irregularities on its surface. The irregularities are formed by a mechanical method such that protrusions (9) and indentations (8) are configured with a center-to-center pitch (P) in the range of from 50 to 300 &mgr;m and such that the apparent thickness after processing is at least three times as large as the unprocessed material thickness.
摘要:
A hydrogen storage alloy particles comprising base particles consisting of hydrogen storage alloy particles and fine particles consisting of at least one of metals, alloys, hydrophobic resins, catalyst materials, metal oxides having a particle size smaller than that of the base particles where the fine particles are very firmly bonded to the base particles are employed as negative electrodes for alkaline storage batteries. The bonding of the fine particles to the base particles is performed by a surface treatment so-called mechanofusion process (one of mechanochemical reaction process) where the base particles and the fine particles are subjected therebetween predominantly to a mechanical energy, practically those derived from the compression and attrition forces simultaneously to emboss the surfaces of the base particles and to allow the fine particles to be extended and bonded firmly under pressure onto the surfaces of the base particles, thereby coating at least a part of the surfaces of the base particles with the fine particles.
摘要:
In the description, a hydrogen storage alloy electrode comprising a hydrogen storage alloy and a conductive metal and completely free of organic binder is disclosed, wherein at least two layers of an active material holding layer and a conductive metal layer essentially are integrated into an electrode sheet having a conductive network communicating throughout the electrode. The electrode can be used in a nickel-metal hydride storage battery, for example, particularly exhibits high efficiency charge/discharge characteristics while satisfying general characteristics as a battery, and has a relatively low cost and facilitates recycling.
摘要:
The present invention relates to a hydrogen storage alloy electrode composed of a hydrogen storage alloy having a CaCu5 region and a Ce2Ni7 region in the crystal structure and satisfies the relational formula: p:q=1:(4+a), where p is the sum of the mole fraction of an element occupying the Ca site of the CaCu5 region and the mole fraction of an element occupying the Ce site of the Ce2Ni7 region, q is the sum of the mole fraction of an element occupying the Cu site of the CaCu5 region and the mole fraction of an element occupying the Ni site of the Ce2Ni7 region, and −0.2≦a≦0.4. Accordingly, although the hydrogen storage alloy electrode contains a little or no Co, it is possible to obtain an electrode having little deterioration due to pulverization of the alloy and a high capacity.
摘要:
A battery has elements for electromotive-force accommodated in a metal outer can which has a bottom having a cylindrical, prismatic or similar shape. The ratio of the bottom thickness (TA) the side thickness (TB) is 1.5-7.0. The metal outer can contains primarily iron and a layer of nickel is provided on at least the inner face of the battery. Shallow grooves are formed on the nickel layer perpendicular to the bottom face. An iron-based metallic sheet formed with a nickel layer on at least one face is subjected to drawing forming into a tubular shape having a bottom, continuous ironing processing being performed such that the side of the can formed in the tubular shape has an ironing ratio in the range of 20% to 90% and a metal outer can is thereby manufactured having a ratio of a bottom thickness to its side thickness from 1.5 to 7.0, having a cylindrical shape, prismatic shape or shape similar thereto, and with shallow longitudinal grooves formed in a nickel layer provided on the battery inside face.
摘要:
A battery accommodates elements for electromotive-force within a metal case. This metal case is a metal case having a bottom wherein the bottom thickness/side thickness ratio has a value of 1.2-4.0 and has a cylindrical, prismatic or similar shape. The metal case is constructed of a metal material whose chief constituent is aluminum. Furthermore, it is desirable that a multiplicity of shallow grooves perpendicular to a bottom face are formed in at least a battery inside face of the metal case and moreover that a nickel layer is provided on the battery inside face. The metal case is made by DI processing involving drawing and ironing, to have a value of bottom thickness/side thickness ratio which was hitherto unavailable,i.e., 1.2-4.0 can be obtained.
摘要:
A jar can for a secondary battery is formed by deep-drawing a clad material prepared by bonding an aluminum sheet and an iron sheet to each other. A nickel layer is formed between the iron sheet and the aluminum sheet. Another nickel layer is formed on another surface of the iron sheet. Thus, a lightweight jar can for a secondary battery having high rigidity is obtained.