摘要:
A laser cutting apparatus capable of properly cutting a workpiece having a large thickness with a laser beam. The laser cutting apparatus includes a gas laser oscillator; and an optical system including a collective lens and transmitting and collecting a laser beam generated in the gas laser oscillator to irradiate a workpiece with the laser beam. An index M2 for evaluating a beam quality of the laser beam emerging from the optical system, with which the workpiece is irradiated, is in a range of 2.8 to 4.5; while the index M2 is defined by a formula: M2=π×(dm)2/(4×λ×Zr); in which λ is a wavelength of the laser beam; dm is a minimum beam diameter of the laser beam in a predetermined optical-path range including a focal point of the collective lens; and Zr is a distance between a first position on an optical axis, at which the minimum beam diameter dm is established, and a second position on the optical axis, at which a beam diameter “21/2×dm” is established, in the laser beam in the predetermined optical-path range.
摘要:
A gas laser oscillator (10) provided with voltage detecting means (4a to 4d) for detecting the voltage of each of a plurality of discharge tube segments (6a to 6d) of a discharge tube before start of discharge and a discharge tube segment start judging means (1) for judging if each of the plurality of discharge tube segments (6a to 6d) has started based on the voltage of the discharge tube segments (6a to 6d) detected by the voltage detecting means (4a to 4d), wherein the discharge tube segment start judging means (1) allows all of the plurality of discharge tube segments (6a to 6d) to start only when the voltages of all of the discharge tube segments (6a to 6d) of the plurality of discharge tube segments are smaller than a predetermined voltage (Vb) is provided. Due to this, it is possible to judge an abnormality in the laser gas before the start of discharge without any work on the part of the operator and thereby prevent the discharge tube from being damaged.
摘要:
A laser cutting apparatus capable of properly cutting a workpiece having a large thickness with a laser beam. The laser cutting apparatus includes a gas laser oscillator; and an optical system including a collective lens and transmitting and collecting a laser beam generated in the gas laser oscillator to irradiate a workpiece with the laser beam. An index M2 for evaluating a beam quality of the laser beam emerging from the optical system, with which the workpiece is irradiated, is in a range of 2.8 to 4.5; while the index M2 is defined by a formula: M2=π×(dm)2/(4×λ×Zr); in which λ is a wavelength of the laser beam; dm is a minimum beam diameter of the laser beam in a predetermined optical-path range including a focal point of the collective lens; and Zr is a distance between a first position on an optical axis, at which the minimum beam diameter dm is established, and a second position on the optical axis, at which a beam diameter “21/2×dm” is established, in the laser beam in the predetermined optical-path range.
摘要:
A laser oscillator that can suppress astigmatism and achieve an axially symmetric laser beam output profile even when a spherical mirror is inserted between an output mirror and a rear mirror. Turning mirrors (plane mirrors) and spherical mirrors are arranged between the output mirror and the rear mirror so as to provide a zigzag round-trip optical path where the optical axes cross in the same plane. This configuration achieves the same effect as if lenses were arranged between the ends of a very long resonator, and the light-gathering performance of the laser beam may be controlled by the output mirror, the rear mirror and the curvatures of the respective turning mirrors. The positions and orientations of the spherical mirrors are determined so that the planes formed by the optical axis of the incident laser beam and the optical axis of the reflected laser beam on the respective spherical mirrors are perpendicular to each other, thereby offsetting the astigmatism and preventing the axial symmetry of the output laser beam profile from degrading. The angle of incidence of the laser beam axis on each spherical mirror may be set to 22.5 degrees or larger. Further, the turning mirrors may be replaced by a slab crystal.
摘要:
A blower (10) includes: at least two or at least three acoustic sensors or vibration sensors (31a to 31c) attached to a casing (12); and a position specifying means (34) for specifying a position of a source of abnormal sound or abnormal vibration from signals detected by the acoustic sensors or vibration sensors. When the position of the abnormal portion is specified in this way, a proper countermeasure can be taken quickly. Further, the blower (10) preferably includes an alarm output judging means (35) for judging whether or not an alarm should be outputted according to the position of the source of the abnormal sound or abnormal vibration specified by the position specifying means. A laser oscillator (100) having the blower (10) is also provided.
摘要:
A laser processing device having an effect similar to that obtained by changing a focal length of a condensing lens. A part of a laser beam entering into a flat surface portion of the condensing lens is not condensed and radiated on a condensing point on a workpiece as a parallel beam. This part of the laser beam serves as an auxiliary beam in laser processing. On the other hand, the other part of the laser beam entering into a curved surface portion is condensed and radiated on or near the circumference of the condensing point.
摘要:
A laser apparatus (100) for performing the laser machining operation by condensing the laser light output from a laser oscillator (3) is disclosed. A laser output value calculation unit calculates a laser output value (L1) based on a command value (L0) issued to a laser oscillator (2). A temperature change estimating unit (31) estimates the temperature change or the temperature (Te) of specified component element(s) (7a, 7b) of the laser apparatus based on the elapsed time (t) and the laser output value calculated by the laser output value calculation unit. An adjusting unit (32) adjusts the conditions for controlling the laser or the conditions for laser machining based on the temperature change or the temperature of the specified component element estimated by the temperature change estimating unit. A stable laser machining operation is performed without a temperature sensor. The laser output value (L1) may be measured by a laser power sensor (5).
摘要:
A laser apparatus (100) for performing the laser machining operation by condensing the laser light output from a laser oscillator (3) is disclosed. A laser output value calculation unit calculates a laser output value (L1) based on a command value (L0) issued to a laser oscillator (2). A temperature change estimating unit (31) estimates the temperature change or the temperature (Te) of specified component element(s) (7a, 7b) of the laser apparatus based on the elapsed time (t) and the laser output value calculated by the laser output value calculation unit. An adjusting unit (32) adjusts the conditions for controlling the laser or the conditions for laser machining based on the temperature change or the temperature of the specified component element estimated by the temperature change estimating unit. A stable laser machining operation is performed without a temperature sensor. The laser output value (L1) may be measured by a laser power sensor (5).
摘要:
A liquid circulation device includes a circulation passage, a liquid feeding device, a pressure sensor, and control circuitry. Through the circulation passage, liquid circulates to be supplied to and collected from a circulatory liquid discharge head. The liquid feeding device is configured to circulate the liquid through the circulation passage. The pressure sensor is configured to detect a pressure of the circulation passage. The control circuitry configured to acquire a characteristic indicating a relationship among a drive amount of the liquid feeding device, discharge information of the liquid discharged from the liquid discharge head, and a pressure detection value of the circulation passage; and change, based on the characteristic acquired, at least one of a control parameter and a calculation expression used to control the liquid feeding device.
摘要:
An image forming apparatus includes a photoconductor, an optical scanner, a development device, a movable density sensor, a density sensor driver, and a processor. The optical scanner includes a light source to emit light, and irradiates a surface of the photoconductor in a main scanning direction with the light to form a latent image on the surface of the photoconductor. The development device develops the latent image into a toner image. The density sensor detects unevenness in density of the toner image in the main scanning direction. The density sensor driver moves the density sensor in the main scanning direction. The processor corrects a driving signal for the light source according to image data to reduce the unevenness in density in the main scanning direction, according to positional data of the density sensor in the main scanning direction and an output value of the density sensor.