Abstract:
A method of enabling a plurality of user equipments (UEs) to transmit on random access channel (RACH). The method including transmitting, by an access point (AP), beacons to activate sets of UEs of the plurality of UEs based on a protocol, each of the sets of UEs containing UEs that are spatially co-located and each beacon associated with a different one of the sets of UEs.
Abstract:
Various exemplary embodiments relate to a method, network node, and non-transitory machine-readable storage medium including one or more of the following: enabling communication via a first and a second access network, wherein the first access network is a first type and the second access network is a second type; communicating with a first control application via at least one of the first access network and the second access network according to a signaling protocol that is used for the communication without regard for which of the first access network and the second access network are used for the communication, wherein the communication effects a change to service provided via at least one data bearer across at least one of the first access network and the second access network, and communicating via the at least one data bearer to exchange non-control application data with at least one other network device.
Abstract:
In one embodiment, the method includes instructing, by a controller, a switch to change from sending data via a first tunnel to sending data via a second tunnel. The first tunnel is between the switch and a first network element, and the second tunnel is between the switch and a second network element. The method further includes receiving, by the controller, acknowledgement from the switch, and notifying, by the controller, the second network element that packets will no longer be sent via the first tunnel in response to the received acknowledgement.
Abstract:
A controller includes control plane charging system to configure data plane charging system in a plurality of switches to gather charging information for user flows and provide the charging information to the controller. The data plane charging system in a selected switch of the plurality of switches can be configured to gather charging information for a user flow and autonomously provide the charging information to the controller.
Abstract:
Various exemplary embodiments relate to a chaining of sequential functions associated with a service or application are considered. This approach relies on a centralized load balancer for reducing the load of inter-rack traffic in a data center. The centralized load balancer may include a memory configured to store a service data flow table; and a processor configured to: receive at the centralized load balancer, a path inquiry for a service data flow; determine which virtual machine to assign the service data flow, wherein at least two functions of a chain of functions required in the service data flow are to be performed on the same rack; and assign the service data flow to the determined virtual machine.
Abstract:
A controller includes control plane charging system to configure data plane charging system in a plurality of switches to gather charging information for user flows and provide the charging information to the controller. The data plane charging system in a selected switch of the plurality of switches can be configured to gather charging information for a user flow and autonomously provide the charging information to the controller.
Abstract:
A capability for connectionless wireless access is presented. A wireless end device is configured to encrypt context information of the wireless end device, based on a security key associated with attachment of the wireless end device to a wireless communication network, to form encrypted context information, generate a packet including a header and a payload where the header includes the encrypted context information, and propagate the packet toward a wireless access node of the wireless communication network. The wireless access node is configured to receive the packet and propagate the encrypted context information toward a controller of the wireless communication network. The controller is configured to receive the encrypted context information from the wireless access node, decrypt the encrypted context information based on a security key associated with attachment of the wireless end device to the wireless communication network to recover the context information of the wireless end device, and determine, based on the context information, whether the wireless end device is permitted to communicate via the wireless communication network.
Abstract:
Systems and methods for User Equipment (UE) to request setting of a configuration of a network. One embodiment includes UE for a telecommunication network. The UE includes a transceiver configured to communicate with a base station of a mobile operator network comprising a Radio Access Network (RAN) and a packet core, and a controller. The controller is able to identify one or more applications residing on the UE, to determine a configuration for the mobile operator network that indicates how one or more elements of the mobile operator network will provide services for applications identified as residing on the UE, to generate a signaling message that describes the configuration, and to transmit the signaling message to the base station to implement the configuration at the mobile operator network for setting how packets are transferred by the mobile operator network between the UE and a Packet Data Network (PDN).
Abstract:
One embodiment of the method includes allocating, using a network management entity, at least one of a plurality of physical resource blocks (PRBs) of a first wireless access technology for utilization by a second wireless access technology. A spectrum of the first wireless access technology is embedded within a spectrum of the second wireless access technology. The method further includes communicating, using the network management entity, a message to a controller of the first wireless access technology identifying the PRBs not allocated for utilization by the second wireless access technology.
Abstract:
Various exemplary embodiments relate to a method, network node, and non-transitory machine-readable storage medium including one or more of the following: enabling communication via a first a second access network, wherein the first access network is a first type and the second access network is a second type; communicating with a first control application via at least one of the first access network and the second access network according to a signaling protocol that is used for the communication without regard for which of the first access network and the second access network are used for the communication, wherein the communication effects a change to service provided via at least one data bearer across at least one of the first access network and the second access network, and communicating via the at least one data bearer to exchange non-control application data with at least one other network device.