摘要:
An improved aluminum-boron carbide (ABC) composite has been discovered that is comprised of a continuous network of AlB24C4 and boron carbide grains having therein other isolated aluminum-boron carbide reactive phases and at most 2% by volume of isolated metal. The improved ABC composite may be formed by forming boron carbide particulates into a porous body that has a porosity of at most about 35%, where the boron particulates have been heat treated to a temperature of 1200° C. to 1800° C., infiltrating the porous body with aluminum or aluminum alloy until an infiltrated aluminum-boron carbide body is formed that has at most about 1% porosity, heat treating the infiltrated body for at least 25 hours at 1000° C. to 1100° C. to form an aluminum boron carbide composite having a continuous network of AlB24C4 and boron carbide, and subsequently heat-treating to 700° C. to 900° C. to form the improved aluminum boron carbide composite.
摘要:
An improved aluminum-boron carbide (ABC) composite has been discovered that is comprised of a continuous network of AlB24C4 and boron carbide grains having therein other isolated aluminum-boron carbide reactive phases and at most 2% by volume of isolated metal. The improved ABC composite may be formed by forming boron carbide particulates into a porous body that has a porosity of at most about 35%, where the boron particulates have been heat treated to a temperature of 1200° C. to 1800° C., infiltrating the porous body with aluminum or aluminum alloy until an infiltrated aluminum-boron carbide body is formed that has at most about 1% porosity, heat treating the infiltrated body for at least 25 hours at 1000° C. to 1100° C. to form an aluminum boron carbide composite having a continuous network of AlB24C4 and boron carbide, and subsequently heat-treating to 700° C. to 900° C. to form the improved aluminum boron carbide composite.
摘要:
Densified composites of a metal such as copper or aluminum with a titanium-silicon-carbide or titanium-aluminum-carbide ceramic material are prepared by forming the ceramic material into a body, and infiltrating the body with the molten metal. The metal is able to rapidly penetrate into void spaces, between grain boundaries and even into the crystal structure of the ceramic grains to form a composite. The starting ceramic material may be previously densified, in which case various types of gradient structures can be produced easily. The process can be operated at low pressures, and so the hot pressing methods that normally must be used to densify these ceramic materials can be avoided.
摘要:
Densified composites of a metal such as copper or aluminum with a titanium-silicon-carbide or titanium-aluminum-carbide ceramic material are prepared by forming the ceramic material into a body, and infiltrating the body with the molten metal. The metal is able to rapidly penetrate into void spaces, between grain boundaries and even into the crystal structure of the ceramic grains to form a composite. The starting ceramic material may be previously densified, in which case various types of gradient structures can be produced easily. The process can be operated at low pressures, and so the hot pressing methods that normally must be used to densify these ceramic materials can be avoided.
摘要:
Various nucleic acids and proteins have been identified by differential hybridization methods as useful as markers for diagnosing kidney damage. The identified marker proteins include (I) androgen related protein, SON protein, FUSE binding Protein 1, claudin10, heat shock protein, phospho triesterase related protein, ubiquitin protein ligase Nedd-4, and Ac39/physophilin, and (II) disabled-2 p96, palmitylated serine/threonine kinase, tumor differentially expressed 1 protein, cytochrome oxidase III, TLH 39 protein precursor, hydroxysteroid dehydrogenase 4 delta -3 beta, and glutathione peroxidase III. The proteins of group (I), and antagonists of the proteins of group (II), are useful for protecting mammals against kidney damage.