摘要:
A material transportation system includes one or more material transportation vehicles, each having magnetic wheels coupled to a magnetically attractive surface that can include a ceiling, a wall, a floor, and/or a transition region. The material transportation vehicles are adapted to carry material from place to place. Each material transportation vehicle has sensors and motor controls that reduce swing motion of the material transportation vehicle and the material coupled thereto. A collision avoidance and traffic control system prevents collisions between the one or more material transportation vehicles.
摘要:
A rolling contact layer-by-layer assembly device comprises at least one roller, a cylinder substrate and a motor to rotate the cylinder substrate. The assembly device optionally includes at least one rinsing nozzle and air applicator. The rollers each provide a polyelectrolyte solution to the surface of the cylinder substrate, the polyelectrolyte solutions having an affinity for each other. Excess polyelectrolyte solution can be washed using the rinsing nozzle followed by a drying step prior to the application of the second polyelectrolyte solution. A plurality of bilayers is produced by the continuous application of polyelectrolyte solutions to form an LBL article such as a nano-composite article or film. The film is then removed from the surface of the cylinder substrate.
摘要:
A method and system for aligning nanotubes within an extensible structure such as a yarn or non-woven sheet. The method includes providing an extensible structure having non-aligned nanotubes, adding a chemical mixture to the extensible structure so as to wet the extensible structure, and stretching the extensible structure so as to substantially align the nanotubes within the extensible structure. The system can include opposing rollers around which an extensible structure may be wrapped, mechanisms to rotate the rollers independently or away from one another as they rotate to stretch the extensible structure, and a reservoir from which a chemical mixture may be dispensed to wet the extensible structure to help in the stretching process.
摘要:
A method and apparatus for transforming vertically-aligned nanostructures into densified, horizontally-aligned arrays. A contact element such as a roller is used to topple an array of carbon nanotubes or other nanostructures by drawing or rolling the contact element across the surface of the substrate such that the vertically-aligned nanostructures are forced into at least partial horizontal-alignment while being densified to give the transformed array enhanced properties. The contact element engages the nanostructures at a location below their upper distal end to topple and densify the array without disrupting the relative alignment of the individual nanostructures in the array. Transfer printing of the nanostructures is also provided.
摘要:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
摘要:
The present invention relates to the formation and processing of nanostructures including nanotubes. Some embodiments provide processes for nanostructure growth using relatively mild conditions (e.g., low temperatures). In some cases, methods of the invention may improve the efficiency (e.g., catalyst efficiency) of nanostructure formation and may reduce the production of undesired byproducts during nanostructure formation, including volatile organic compounds and/or polycylic aromatic hydrocarbons. Such methods can both reduce the costs associated with nanostructure formation, as well as reduce the harmful effects of nanostructure fabrication on environmental and public health and safety.
摘要:
A method and system for aligning nanotubes within an extensible structure such as a yarn or non-woven sheet. The method includes providing an extensible structure having non-aligned nanotubes, adding a chemical mixture to the extensible structure so as to wet the extensible structure, and stretching the extensible structure so as to substantially align the nanotubes within the extensible structure. The system can include opposing rollers around which an extensible structure may be wrapped, mechanisms to rotate the rollers independently or away from one another as they rotate to stretch the extensible structure, and a reservoir from which a chemical mixture may be dispensed to wet the extensible structure to help in the stretching process.
摘要:
Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures. In some instances, the application of a force may result in a material comprising relatively closely-spaced nanostructures. The materials described herein may be further processed for use in various applications, such as composite materials (e.g., nanocomposites). For example, a set of aligned nanostructures may be formed, and, after the application of a force, transferred, either in bulk or to another surface, and combined with another material (e.g., to form a nanocomposite) to enhance the properties of the material.
摘要:
Methods, systems, and devices for precision locating additively manufactured components for assembly and/or post processing manufacturing are provided for herein. In some embodiments, at least one component can be additively manufactured to include one or more kinematic features on one or more surfaces of the component. The kinematic feature(s) can be configured to engage complementary kinematic feature(s) formed in a second component so the two components can form an assembly. Alternatively, the kinematic feature(s) can be configured to engage complementary kinematic feature(s) associated with a post-processing machine such that the one or more post-processing actions can be performed on the component after the component is precisely located with respect to the machine by way of the kinematic features of the component and associated with the machine. A variety of systems and methods that utilize kinematic features are also provided.
摘要:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes. For example, in certain embodiments, a system for growing nanostructures is provided which includes a growth substrate, a region able to expose the surface of the growth substrate to a set of conditions selected to cause catalytic formation of nanostructures on the surface of the growth substrate, and a region able to expose the surface of the growth substrate to a set of conditions selected to remove nanostructures from the surface of the growth substrate.