摘要:
Methods and apparatus for cooling a reticle are disclosed. According to one aspect of the present invention, an apparatus for providing top side cooling to a reticle includes a heat exchanger arrangement and an actuator. The heat exchanger arrangement includes a first surface arranged to facilitate heat transfer between the reticle and the heat exchanger arrangement. The heat transfer provides cooling to at least some portions of the reticle. The actuator positions the first surface of the heat exchanger arrangement at a distance over the reticle.
摘要:
An exposure method that uses a substrate (M) held by a holding member (28) to perform exposure processing, comprising a holding process, which holds a prescribed region (AR3) of the substrate as the holding region by means of the holding member, and a deformation process, which selectively deforms one side of the holding region of the substrate held by the holding process with respect to the other side. According to the present invention, a prescribed region of the substrate is held as a holding region by means of a holding member, and one side of the holding region of said held substrate is selectively deformed with respect to the other side, so it is possible to selectively eliminate the nonlinear deformation components attributable to holding of the substrate with respect to one side from among the two sides of the substrate using the holding region as a reference. Since it is possible to put the pattern projected via the substrate into a linearly correctable status, it is possible to reduce warping of the pattern.
摘要:
An exposure method that uses a substrate (M) held by a holding member (28) to perform exposure processing, comprising a holding process, which holds a prescribed region (AR3) of the substrate as the holding region by means of the holding member, and a deformation process, which selectively deforms one side of the holding region of the substrate held by the holding process with respect to the other side. According to the present invention, a prescribed region of the substrate is held as a holding region by means of a holding member, and one side of the holding region of said held substrate is selectively deformed with respect to the other side, so it is possible to selectively eliminate the nonlinear deformation components attributable to holding of the substrate with respect to one side from among the two sides of the substrate using the holding region as a reference. Since it is possible to put the pattern projected via the substrate into a linearly correctable status, it is possible to reduce warping of the pattern.
摘要:
Devices and methods are disclosed for holding a reticle or analogous object, particularly a planar object. An exemplary reticle-holding device includes a reticle chuck having a reticle-holding surface on which a reticle is placed to hold the reticle. The device includes at least one ultrasonic transducer (as an exemplary vibration-inducing device) sonically coupled to the reticle to excite, whenever the ultrasonic transducer is being energized, a vibrational mode in the reticle or reticle chuck, or both. The vibration mode is sufficient to reduce an adhesion force holding the reticle to the reticle-holding surface. Sonic coupling can be by direct contact with the transducer or across a gap.
摘要:
An apparatus for controlling the distortion of a reticle (28) includes a temperature adjuster (258) and a control system (226). The temperature adjuster (258) includes a plurality of adjuster elements (258E) that individually adjust the temperature of a plurality of regions (28R) of the reticle (28). The control system (226) includes a state observer (250) and a controller (260). The state observer (250) estimates an estimated physical condition (250C) of the reticle (28). The controller (260) controls the adjuster elements (258E) of the temperature adjuster (258) based at least in part on the estimated physical condition (250C).
摘要:
An exemplary apparatus includes a controllably movable body, a holding device, and a coolant circulation device. The body comprises a wall including a planar contact surface that receives the reverse surface of the article. The wall co-extends with at least a heat-receiving area of the utility surface whenever the article is being held by the body. The wall also includes a second surface separated from but proximal to the contact surface, and is thermally conductive from the contact surface to the second surface. The holding device holds the article to the contact surface with the reverse surface contacting the contact surface. The coolant circulation device delivers flow of a coolant fluid to the second surface to urge conduction of heat from the contact surface to the second surface. The holding device and coolant-circulation device operate in concert to actively control shape of the article being held by the apparatus.
摘要:
An optical system including an optical element, a positioning mechanism configured to position the optical element into an operational position, and a temperature control mechanism configured to intermittently control the temperature of the optical element between operations. By alternatively positioning the optical element between an operational position and a position in thermal contact with the temperature control mechanism, the two mechanisms for positioning and controlling the temperature of the optical element are de-coupled from one another. As a result, the mechanism for each may be optimized In non-exclusive embodiments, the temperature control mechanism may be used to control the temperature of an individual optical element or a plurality of optical elements, such as for example, a fly's eye mirror used in an illumination unit of an EUV lithography tool.
摘要:
An exemplary apparatus includes a controllably movable body, a holding device, and a coolant circulation device. The body comprises a wall including a planar contact surface that receives the reverse surface of the article. The wall co-extends with at least a heat-receiving area of the utility surface whenever the article is being held by the body. The wall also includes a second surface separated from but proximal to the contact surface, and is thermally conductive from the contact surface to the second surface. The holding device holds the article to the contact surface with the reverse surface contacting the contact surface. The coolant circulation device delivers flow of a coolant fluid to the second surface to urge conduction of heat from the contact surface to the second surface. The holding device and coolant-circulation device operate in concert to actively control shape of the article being held by the apparatus.
摘要:
A device container assembly (30) for storing a reticle (26) includes a first container (246) and a device retainer assembly (248). The first container (246) encircles and encloses the reticle (26). The device retainer assembly (248) selectively couples the reticle to the first container (246). The device retainer assembly (248) can include an adjustable first device retainer (256) having a retainer section (280A) that is movable relative to the first container (246) between an engaged position (281A) in which the retainer section (280A) engages the reticle (26) and a disengaged position (281B) in which the retainer section (280A) does not engage the reticle (26). With this design, the device container assembly (30) can retain the reticle (26) in a secure fashion and the integrity of the reticle (26) is maintained by the device container assembly (30).
摘要:
An exposure apparatus (10) that includes a support frame (12), a base frame (14), a first stage assembly (16), a second stage assembly (18), an optical frame (20), an optical device (22), and a measurement system (24) is provided herein. The exposure apparatus (10) is typically mounted to a mounting base (30). As provided herein, the optical frame (20), the optical device (22), and a portion of the measurement system (24) can be assembled as an optical assembly (36) that is isolated from the base frame (14) with an optical isolation system (42). Further, the base frame (14), at least a portion of the first stage assembly (16) and the second stage assembly (18) can be assembled as a base assembly (38) that is isolated from the support frame (12) with a base isolation system (40). With this design, the base assembly (38) is isolated from the support frame (12) with the base isolation system (40) and the optical assembly (36) is isolated from the base assembly (38) with the optical isolation system (42). As a result thereof, the assemblies (36), (38) are effectively attached in series to the mounting base (30) with the isolation systems (40), (42) and the optical device (22) is isolated from the mounting base (30) with two levels of isolation. The two levels of isolation systems (40), (42) better isolate the optical device (22) from vibration and disturbances. Further, with the design provided herein, the optical device (22) and the other components of the optical assembly (36) can be accessed relatively easily for service and adjustment.